Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T04:38:05.287Z Has data issue: false hasContentIssue false

High Rate of Destruction of Molecular Clouds by Hot Stars

Published online by Cambridge University Press:  14 August 2015

M. Heydari-Malayeri
Affiliation:
Observatoire de Paris, Meudon
M. C. Lortet
Affiliation:
Observatoire de Paris, Meudon
L. Deharveng
Affiliation:
Observatoire de Marseille

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tenorio-Tagle (1979) first proposed the idea of a third dynamical phase, the champagne phase, following the formation and expansion phases of an HII region; the idea was further explored by Bodenheimer et al. (1979) and Tenorio-Tagle et al. (1979). The champagne phase begins when the high pressure gas of an HII region formed inside a molecular cloud reaches the edge of the cloud and bursts into the lower pressure, low density, intercloud medium. One important implication of the model is the prediction of an enormous enhancement of the rate of erosion of the molecular cloud by the ionising radiation of hot stars, which begins as soon as the process of the decrease of the gas density between the star and the cloud is started. The proportion of hydrogen molecules eroded by ionising photons may reach about 10-2. The mass eroded may exceed the mass of the ionised gas in the case where the ionisation front reaching the edge of the cloud is of D-type. Additional mechanisms (for instance stellar winds), if at work, may even increase the efficiency of the mechanism.

Type
Research Article
Copyright
Copyright © Reidel 1980 

References

Baran, G.: 1977, private communication.Google Scholar
Blair, G.: 1976, Ph. D. Thesis.Google Scholar
Blitz, L.: 1978, Ph. D. Thesis, N.A.S.A. TM 79 708.Google Scholar
Bodenheimer, P., Tenorio-Tagle, G., Yorke, H.W.: 1979, Astrophys. J. 233, 479.Google Scholar
Colley, D., Scott, P.F.: 1977, M.N.R.A.S. 181, 703.CrossRefGoogle Scholar
Deharveng, L.: 1979, Thesis, University of Marseille.Google Scholar
Dickel, H.R.: 1979, this Symposium.Google Scholar
de Graauw, T., Lidholm, S., Fitton, B., Israel, F.P., Sargent, A., Kuiper, T.B.H., Nieuwenhuyzen, H.: 1979, this Symposium.Google Scholar
Heydari-Malayeri, M.: 1979, Ph. D. Thesis, University of Paris VII.Google Scholar
Heydari-Malayeri, M., Testor, G., Lortet, M.C.: 1980 Astron. Astrophys. in press.Google Scholar
Israel, F.P.: 1979, private communication.Google Scholar
Lada, C.J., Elmegreen, B.G.: 1979, Astron. J. 84, 336.Google Scholar
Lada, C.J., Elmegreen, B.G.: 1978, Astrophys. J. (Letters) 226, L39.Google Scholar
Lada, C.J., Wooden, D.: 1979, Astrophys. J. 232, 158.Google Scholar
Stasinska, G.: 1978, Astron. Astrophys. 66, 257; Astron. Astrophys. Suppl. 32, 429.Google Scholar
Stasinska, G.: 1979, to be submitted to Astron. Astrophys.Google Scholar
Tenorio-Tagle, G.: 1978, Astron. Astrophys. 71, 59.Google Scholar
Tenorio-Tagle, G., Yorke, H.W., Bodenheimer, P.: 1979, Astron. Astrophys. 80, 110.Google Scholar
Wynn-Williams, C.G., Becklin, E.E., Mathews, K., Neugebauer, G., Werner, M.W.: 1977, M.N.R.A.S. 179, 255.Google Scholar