Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-03T22:51:50.493Z Has data issue: false hasContentIssue false

Hubble Space Telescope: A Generator of Sub-Milliarcsecond Precision Parallaxes

Published online by Cambridge University Press:  07 August 2017

G. Benedict
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
W. Jefferys
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
B. McArthur
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
E. Nelan
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
A. Whipple
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
Q. Wang
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
D. Story
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
P. Hemenway
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
P. Shelus
Affiliation:
McDonald Observatory University of Texas Austin, TX 78712
W. Van Altena
Affiliation:
Astronomy Department Yale University New Haven, CT 06511
O. Franz
Affiliation:
Lowell Observatory Flagstaff, AZ 86001
R. Duncombe
Affiliation:
Aerospace Engineering University of Texas Austin, TX 78712
L. Fredrick
Affiliation:
Astronomy Department University of Virginia, Charlottesville, VA 22903

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hubble Space Telescope Fine Guidance Sensor 3 can generate sub-milliarcsecond precision parallaxes in eighteen months. We discuss the internal precision and external accuracy of our observations of Proxima Centauri and Barnard's Star. For some classes of targets Hubble Space Telescope will remain the parallax tool of choice for years to come. It can offer 0.5 mas precision. It will remain useful by satisfying urgent needs for quick results, by offering a 13 magnitude dynamic range, and by providing an unparalleled binary dissection capability.

Type
1. Current Advances in Astrometry
Copyright
Copyright © Kluwer 1995 

References

Benedict, G. F. et al. (1992) PASP, 104, 958 CrossRefGoogle Scholar
Benedict, G. F. et al. (1994) PASP, 106, 327 CrossRefGoogle Scholar
Black, D. and Scargle, J. (1982) ApJ, 263, 854 CrossRefGoogle Scholar
Bradley, A. et al. (1991) PASP, 103, 317 CrossRefGoogle Scholar
Franz, O. G. et al. (1994a) “Binary Star Astrometry and Photometry from Transfer-Function Scans” in Calibrating Hubble Space Telescope, ed. by Blades, J. C. and Osmer, S. J., STScI Google Scholar
Franz, O. G. et al. (1994b) BAAS, 26, 929 Google Scholar
Harrington, R.S. and Dahn, C.C. (1980) AJ, 85, 454 CrossRefGoogle Scholar
Jefferys, W. H. et al. (1994) “Optical Field Angle Distortion of FGS 3”, in Calibrating Hubble Space Telescope, ed. by Blades, J. C. and Osmer, S. J., STScI Google Scholar
Kawaler, S. and Bradley, P. (1994) ApJ, in press Google Scholar
Monet, D. G. et al. (1992) AJ, 103, 638 CrossRefGoogle Scholar
Simon, R. S. et al. (1991) “Imaging Optical Interferometry” in IAU Coll. 131 ASP Conf. Ser. Vol 19, 358.Google Scholar
van Altena, W. F., Lee, J. T., and Hoffleit, E. D. (1991) The General Catalogue of Trigonometric Parallaxes, Preliminary Version , in Astronomical Data Center CD-ROM Selected Astronomical Catalogs, Volume 1, Brotzman, L. E., Gessner, S. E., Mead, J. M. and Van Steenberg, M. E., eds., Goddard Space Flight Center, Greenbelt.Google Scholar
van Altena, W. F., Lee, J. T., and Hoffleit, E. D. (1994) The General Catalogue of Trigonometric Parallaxes, Yale University Observatory, New Haven.Google Scholar
van Altena, W. F. (1994), private communication Google Scholar
Whipple, A. L. et al. (1994) “Maintaining the FGS 3 OFAD Calibrations with the Long-Term Stability Test”, in Calibrating Hubble Space Telescope, ed. by Blades, J. C. and Osmer, S. J., STScI Google Scholar