Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T19:28:14.524Z Has data issue: false hasContentIssue false

Microwave Spectroscopy of Molecular Ions in the Laboratory and in Interstellar Space

Published online by Cambridge University Press:  04 August 2017

R. Claude Woods*
Affiliation:
University of Wisconsin–Madison, Department of Chemistry 1101 University Avenue Madison, Wisconsin 53706 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Refinements of the instrumentation and methods used for laboratory microwave spectroscopy of molecular ions in the last few years have led to successful observation of spectra of several new molecular ions of particular astrophysical interest. Notable among these enhancements have been the use of magnetic fields to increase the density of ions in discharge plasmas and the extension of upper frequency limits of the spectrometers towards and into the sub-millimeter regime. the number of ions now observed by laboratory microwave spectroscopy is more than a dozen, and about two thirds of these have also been detected, at least tentatively, by radioastronomy. Even where detections are uncertain or impossible, useful upper bounds on ion abundances can be gleaned from radioastronomical observations once exact transition frequencies and assignments are known from laboratory studies. Special attention will be given in this presentation to the status of laboratory and radioastronomical work on HOC+, H2D+, and SO+, molecular ions which have been the object of our own recent interest and effort in this area.

Type
Basic Studies
Copyright
Copyright © Reidel 1987 

References

1. Hirota, E., High-Resolution Spectroscopy of Transient Molecules, Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
2. DeLucia, F.C., Herbst, E., Plummer, G.M., and Blake, G., J. Chem. Phys. 78, 2312 (1983).Google Scholar
3. Gudeman, C.S. and Woods, R.C., Phys. Rev. Lett. 48, 1344 (1982).Google Scholar
4. Woods, R. C., Gudeman, C.S., Dickman, R.L., Goldsmith, P.F., Huguenin, G.R., Irvine, W.M., Hjalmarson, A.O., Nyman, L.-Å., and Olofsson, H., Astrophys. J. 270, 583 (1983).CrossRefGoogle Scholar
5. Wagner-Redeker, W., Kemper, P.R., Jarrold, M.F., and Bowers, M.T., J. Chem. Phys. 83, 1121 (1985).CrossRefGoogle Scholar
6. McMahon, T.B. and Kebarle, P., J. Chem. Phys. 83, 3919 (1985).CrossRefGoogle Scholar
7. Blake, G.A., Helminger, P., Herbst, E. and DeLucia, F.C., Astrophys. J. 264, L69 (1983).Google Scholar
8. Bogey, M., Demuynck, C., and Destombes, J.L., to be published.Google Scholar
9. Warner, H.E. and Woods, R.C., to be published.Google Scholar
10. Warner, H.E., Conner, W.T., Petrmichl, R.H., and Woods, R.C., J. Chem. Phys. 81, 2514 (1984).Google Scholar
11. Bogey, M., Demuynck, C., Denis, C., Destombes, J.L., and Lemoine, B., Astr. Ap. 137, L15 (1984).Google Scholar
12. Amano, T. and Watson, J.K.G., J. Chem. Phys. 81 2869 (1984).CrossRefGoogle Scholar
13. Phillips, T.G., Blake, G.A., Keene, J., Woods, R.C., and Churchwell, E., Astrophys. J. 294, L45 (1985).Google Scholar
14. Prasad, S.S. and Huntress, W.T. Jr., Ap. J. Suppl. 43, 1 (1980).CrossRefGoogle Scholar
15. Graedel, T.E., Langer, W.D., and Frerking, M.A., Ap. J. Suppl. 48, 321 (1982).CrossRefGoogle Scholar
16. Leung, C.M., Herbst, E., and Heubner, W.F., Ap. J. Suppl. 56, 231 (1984).Google Scholar
17. Thaddeus, P., Guelin, M., and Linke, R.A., Astrophys. J. 246, L41 (1981).CrossRefGoogle Scholar
18. Bogey, M., Demuynck, C., and Destombes, J.L., Astr. Ap. 138, L11 (1984).Google Scholar
19. Plummer, G.M., Herbst, E., and DeLucia, F.C., J. Chem. Phys 83, 1428 (1985).CrossRefGoogle Scholar
20. Bogey, M., Demuynck, C., Denis, M., and Destombes, J.L., Astr. Ap. July, 1985.Google Scholar
21. Liu, D.J. and Oka, T., Phys. Rev. Lett. 54, 1786 (1985).Google Scholar
22. Bogey, M., Demuynck, C., and Destombes, J.L., J. Chem. Phys. 83, 3703 (1985).Google Scholar
23. Amano, T., J. Chem. Phys. 81, 3350 (1984).CrossRefGoogle Scholar
24. Altman, R.S., Crofton, M.W., and Oka, T., J. Chem. Phys. 81, 4255 (1984).Google Scholar
25. Carballo, N., Warner, H.E. and Woods, R.C., to be published.Google Scholar
26. Hardwick, J.L., Luo, Y., Winicur, D.H., and Coxon, J.A., Can. J. Phys. 62, 1792 (1984).Google Scholar
27. Churchwell, E. and Woods, R.C., to be published.Google Scholar
28. Woods, R.C., Dixon, T.A., Saykally, R.J., and Szanto, P.G., Phys. Rev. Lett. 35, 1269 (1975).Google Scholar
29. Saykally, R.J., Dixon, T.A., Anderson, T.E., Szanto, P.G. and Woods, R.C., Astrophys. J. 205, L101 (1976).Google Scholar
30. Gudeman, C.S., Haese, N.N., Piltch, N.D., and Woods, R.C., Astrophys. J. 246, L47 (1981).Google Scholar
31. Dixon, T.A. and Woods, R.C., Phys. Rev. Lett. 34, 61 (1975).Google Scholar
32. Bowman, W.C., Herbst, E., and DeLucia, F.C., J. Chem. Phys 77, 4261 (1982).Google Scholar
33. Bowman, W.C., Plummer, G.M., Herbst, E., and DeLucia, F.C., J. Chem. Phys. 79, 2093 (1983).Google Scholar
34. Warner, H.E., Conner, W.T., and Woods, R.C., J. Chem. Phys. 81, 5413 (1984).CrossRefGoogle Scholar
35. Bekooy, J.P., Verhoeve, P., Meerts, W.L., and Dymanus, A., J. Chem. Phys. 82, 3868 (1985).Google Scholar