No CrossRef data available.
Published online by Cambridge University Press: 25 May 2016
Three different topics regarding the ISM in the Magellanic Clouds are discussed. First, we examine how the Magellanic Stream can be used as a tracer of the ionizing radiation leaking out of Galaxy and the Magellanic Clouds. We show that the radiation reaching the Magellanic Stream is less than 1% of the ionizing radiation produced by Galactic 0 and B stars. Since about 14% of the ionizing radiation from these stars is required to ionize the Reynolds layer, which is within 1 kpc of the disk, most of this radiation must be absorbed before reaching the Stream.
Second, we examine the reliability of using CO as a tracer of H 2 in regions of low or modest column densities (not giant molecular cloud complexes). For our Galaxy, the usual CO to H 2 conversion factor overlooks a considerable amount of H 2 and the evidence suggests that this may be true in the LMC as well. Finally, we present numerical hydrodynamical calculations of the interstellar medium in disk galaxies for a region of size 2 kpc along the plane and 15 kpc out of the plane. The simulations reveal a rich structure of low density hot regions separated by cold dense material, with the resulting position velocity diagrams being qualitatively similar to the recent HI studies of the LMC. A number of other aspects of these simulations are discussed also.