Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T01:50:28.160Z Has data issue: false hasContentIssue false

Tidal Heating of Globular Clusters

Published online by Cambridge University Press:  19 July 2016

David F. Chernoff
Affiliation:
Center for Radiophysics and Space Research Cornell University
Stuart L. Shapiro
Affiliation:
Center for Radiophysics and Space Research Cornell University

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The influence of tidal heating on the evolution of globular clusters (GC's) in circular orbits about the Galactic center is studied. Giant Molecular Clouds (GMC's) stretch a globular cluster in a direction transverse to its orbit through the disk. The variation in acceleration with height in the disk compresses the cluster in a longititudinal direction. Numerical and analytic calculations of heating and mass loss for GC's, represented by King models, show that disk heating dominates. We apply the results to calculate GC evolution prior to core collapse or tidal disruption using a three parameter (energy, mass, and tidal radius) sequence of King models. The changes in the parameters are calculated for tidal perturbations, relaxation and evaporation. Clusters close to the Galactic center (less than 3 kpc) undergo core collapse in a Hubble time. The effect of tidal perturbations on energy and mass loss of the cluster is strongest between 3 and 5 kpc where it can substantially effect the evolution of the cluster. Here, depending upon their initial concentration, clusters are either tidally heated and dissolved, or forced towards a gravothermal catastrophe in times that are a fraction of a Hubble time. These inner regions of the Galaxy should be fertile territory for the search for post-collapsed clusters.

Type
Chapter IV. Review Papers on Evolution of Globular Clusters
Copyright
Copyright © Kluwer 1988 

References

REFERENCES

Applegate, J. H. 1986 Astrophys. J. 301, 132.CrossRefGoogle Scholar
Bahcall, J. N., Schmidt, M. and Soneira, R. M. 1982 Astrophys. J. Letters 258, L23.CrossRefGoogle Scholar
Bahcall, J. N. 1984 Astrophys. J. 287, 926.CrossRefGoogle Scholar
Blitz, L. 1979 Astrophys. J. Letters 231, L115.CrossRefGoogle Scholar
Cohn, H. 1985 in IAU Symposium No. 113, Dynamics of Star Clusters, Goodman, J. and Hut, P., eds., Reidel, Dordrecht, p 161.CrossRefGoogle Scholar
Chernoff, D. and Shapiro, S. 1986 submitted.CrossRefGoogle Scholar
Chernoff, D., Kochanek, C. and Shapiro, S. 1986 in press.Google Scholar
Chernoff, D., Weinberg, M. and Shapiro, S. 1986 in preparation.Google Scholar
Djorgovski, G. 1986 personal communication.Google Scholar
Fall, S. M. and Rees, M. J. 1985 Astrophys. J., 298, 18.CrossRefGoogle Scholar
Grindlay, J. E. 1984 Adv. Space Res. 3, 19.CrossRefGoogle Scholar
Grindlay, J. E. 1985 in Proc. Japan-US Seminar in Galactic and Extragalactic Compact X-Ray Sources, Tanaka, Y. and Lewin, W., eds., ISAS, Tokyo, p. 215.Google Scholar
Grindlay, J. E. 1986 in Evolution of Galactic X-Ray Binaries, Trumper, J., Lewin, W. and Brinkman, W., eds., NATO ASI series, p. 25.Google Scholar
Grindlay, J. E. and Hertz, P. 1985 in Cataclysmic Variables and Low Mass X-Ray Binaries, Lamb, D. Q. and Patterson, J., eds., Reidel, Dordrecht, p. 79.CrossRefGoogle Scholar
King, I. R. 1958 Astron. J. 63, 465.CrossRefGoogle Scholar
King, I. R. 1966 Astron. J. 71, 64.CrossRefGoogle Scholar
Lightman, A. P. and Shapiro, S. L. 1978 Rev. Modern Phys., 50, 437.CrossRefGoogle Scholar
Ostriker, J. P., Spitzer, L. and Chevalier, R. A. 1972 Astrophys. J. Letters 176, L51.CrossRefGoogle Scholar
Ostriker, J. P. 1985 in IAU Sysmposium No. 113, Dynamics of Star Clusters, Goodman, J. and Hut, P., eds., Reidel, Dordrecht, p. 347.CrossRefGoogle Scholar
Sanders, D. B., Solomon, P. M. and Scoville, N. Z. 1984 Astrophys. J. 276, 182.CrossRefGoogle Scholar
Shapiro, S. L. 1985 in IAU Symposium No. 113, Dynamics of Star Clusters, Goodman, J. and Hut, P., eds., Reidel, Dordrecht, p. 373.CrossRefGoogle Scholar
Soloman, P. M., Sanders, D. B. and Scoville, N. Z. 1979 in IAU Symposium No. 84, Large Scale Characteristics of the Galaxy, Burton, W. B., ed., Reidel, Dordrecht, p. 35.CrossRefGoogle Scholar
Spitzer, L. 1985 in IAU Symposium No. 113, Dynamics of Star Clusters, Goodman, J. and Hut, P., eds., Reidel, Dordrecht p. 109.CrossRefGoogle Scholar
Spitzer, L. 1975 in IAU Symposium No. XXX. Dynamics of Stellar Systems, Hayli, A., ed., Reidel, Dordrecht, p. xxx.Google Scholar
Spitzer, L. 1958 Astrophys. J. 127, 17.CrossRefGoogle Scholar
Spitzer, L. and Chevalier, R. 1973 Astrophys. J. 183, 565.CrossRefGoogle Scholar
Stodolkiewicz, J. S. 1985 in IAU Symposium No. 113, Dynamics of Star Clusters, Goodman, J. and Hut, P., ed., Reidel, Dordrecht, p. 361.CrossRefGoogle Scholar
Tremaine, S., Ostriker, J. and Spitzer, L. 1975, Astrophys. J. 196, 407.CrossRefGoogle Scholar
Wielen, R. W. 1985 in IAU Symposium No. 113, Dynamics of Star Clusters, Goodman, J. and Hut, P., eds., Reidel, Dordrecht, p. 449.CrossRefGoogle Scholar
Wiyanto, P., Kato, S. and Inagaki, S. 1985 Publ. Astron. Soc. Pacific 37, 715.Google Scholar
van der Kruit, P. C. and Searle, L. 1982 Astron. Astrophys. 110, 61.Google Scholar