Skip to main content
×
×
Home

Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode

  • Henning Peters (a1), Valentin Riedl (a2), Andrei Manoliu (a3), Martin Scherr (a4), Dirk Schwerthöffer (a4), Claus Zimmer (a5), Hans Förstl (a4), Josef Bäuml (a4), Christian Sorg (a2) and Kathrin Koch (a6)...
Abstract
Background

In patients with schizophrenia in a psychotic episode, intra-striatal intrinsic connectivity is increased in the putamen but not ventral striatum. Furthermore, multimodal changes have been observed in the anterior insula that interact extensively with the putamen.

Aims

We hypothesised that during psychosis, putamen extra-striatal functional connectivity is altered with both the anterior insula and areas normally connected with the ventral striatum (i.e. altered functional connectivity distinctiveness of putamen and ventral striatum).

Method

We acquired resting-state functional magnetic resonance images from 21 patients with schizophrenia in a psychotic episode and 42 controls.

Results

Patients had decreased functional connectivity: the putamen with right anterior insula and dorsal prefrontal cortex, the ventral striatum with left anterior insula. Decreased functional connectivity between putamen and right anterior insula was specifically associated with patients' hallucinations. Functional connectivity distinctiveness was impaired only for the putamen.

Conclusions

Results indicate aberrant extra-striatal connectivity during psychosis and a relationship between reduced putamen–right anterior insula connectivity and hallucinations. Data suggest that altered intrinsic connectivity links striatal and insular pathophysiology in psychosis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode
      Available formats
      ×
Copyright
Corresponding author
Kathrin Koch, Department of Neuroradiology and TUM-Neuroimaging Center Klinikum rechts der Isar, Technische Universität München, Ismaninger strasse 22, 81675 Munich, Germany. Email: kathrin.koch@tum.de
Footnotes
Hide All
*

These authors contributed equally to this work.

Declaration of interest

None.

Footnotes
References
Hide All
1 Howes, OD, Egerton, A, Allan, V, McGuire, P, Stokes, P, Kapur, S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 2009; 15: 2550–9.
2 Howes, OD, Kapur, S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr Bull 2009; 35: 549–62.
3 Howes, OD, Montgomery, AJ, Asselin, MC, Murray, RM, Valli, I, Tabraham, P, et al Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 2009; 66: 1320.
4 Kegeles, LS, Abi-Dargham, A, Frankle, WG, Gil, R, Cooper, TB, Slifstein, M, et al Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 2010; 67: 231–9.
5 Agid, O, Mamo, D, Ginovart, N, Vitcu, I, Wilson, AA, Zipursky, RB, et al Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response – a double-blind PET study in schizophrenia. Neuropsychopharmacology 2007; 32: 1209–15.
6 Sorg, C, Manoliu, A, Neufang, S, Myers, N, Peters, H, Schwerthoffer, D, et al Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull 2013; 39: 387–95.
7 Di Martino, A, Scheres, A, Margulies, DS, Kelly, AM, Uddin, LQ, Shehzad, Z, et al Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 2008; 18: 2735–47.
8 Seeley, WW, Menon, V, Schatzberg, AF, Keller, J, Glover, GH, Kenna, H, et al Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27: 2349–56.
9 Morey, RA, Inan, S, Mitchell, TV, Perkins, DO, Lieberman, JA, Belger, A. Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Arch Gen Psychiatry 2005; 62: 254–62.
10 Salvador, R, Martinez, A, Pomarol-Clotet, E, Sarro, S, Suckling, J, Bullmore, E. Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. Neuroimage 2007; 35: 83–8.
11 Zhou, Y, Liang, M, Tian, L, Wang, K, Hao, Y, Liu, H, et al Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 2007; 97: 194205.
12 Zhou, Y, Liang, M, Jiang, T, Tian, L, Liu, Y, Liu, Z, et al Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 2007; 417: 297302.
13 Tu, PC, Lee, YC, Chen, YS, Li, CT, Su, TP. Schizophrenia and the brain's control network: aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia. Schizophr Res 2013; 147: 339–47.
14 Fornito, A, Harrison, BJ, Goodby, E, Dean, A, Ooi, C, Nathan, PJ, et al Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry 2013; 70: 1143–51.
15 Menon, V, Uddin, LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 2010; 214: 655–67.
16 Manoliu, A, Riedl, V, Zherdin, A, Muhlau, M, Schwerthoffer, D, Scherr, M, et al Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr Bull 2014; 40: 428–37.
17 Palaniyappan, L, Liddle, PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci 2012; 37: 1727.
18 Etkin, A, Prater, KE, Schatzberg, AF, Menon, V, Greicius, MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry 2009; 66: 1361–72.
19 Spitzer, RL, Williams, JB, Gibbon, M, First, MB. The Structured Clinical Interview for DSM-III-R (SCID). I: history, rationale, and description. Arch Gen Psychiatry 1992; 49: 624–9.
20 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder (4th edn) (DSM-IV). APA, 1994.
21 Kay, SR, Fiszbein, A, Opler, LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–76.
22 Murphy, K, Bodurka, J, Bandettini, PA. How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage 2007; 34: 565–74.
23 Van Dijk, KR, Sabuncu, MR, Buckner, RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012; 59: 431–8.
24 Martinez, D, Slifstein, M, Broft, A, Mawlawi, O, Hwang, DR, Huang, Y, et al Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 2003; 23: 285300.
25 Birn, RM, Murphy, K, Bandettini, PA. The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 2008; 29: 740–50.
26 Woods, SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 2003; 64: 663–7.
27 Dandash, O, Fornito, A, Lee, J, Keefe, RS, Chee, MW, Adcock, RA, et al Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophr Bull 2014; 40: 903–14.
28 Orliac, F, Naveau, M, Joliot, M, Delcroix, N, Razafimandimby, A, Brazo, P, et al Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia. Schizophr Res 2013; 148: 7480.
29 Manoliu, A, Meng, C, Brandl, F, Doll, A, Tahmasian, M, Scherr, M, et al Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front Hum Neurosci 2013; 7: 930.
30 Craig, AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 2002; 3: 655–66.
31 Fletcher, PC, Frith, CD. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci 2009; 10: 4858.
32 Corlett, PR, Taylor, JR, Wang, XJ, Fletcher, PC, Krystal, JH. Toward a neurobiology of delusions. Prog Neurobiol 2010; 92: 345–69.
33 Palaniyappan, L, White, TP, Liddle, PF. The concept of salience network dysfunction in schizophrenia: from neuroimaging observations to therapeutic opportunities. Curr Top Med Chem 2012; 12: 2324–38.
34 Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 2003; 160: 1323.
35 Kapur, S, Mizrahi, R, Li, M. From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology of psychosis. Schizophr Res 2005; 79: 5968.
36 Murray, GK, Corlett, PR, Clark, L, Pessiglione, M, Blackwell, AD, Honey, G, et al Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 2008; 13: 6776.
37 Palaniyappan, L, Simmonite, M, White, TP, Liddle, EB, Liddle, PF. Neural primacy of the salience processing system in schizophrenia. Neuron 2013; 79: 814–28.
38 Cole, DM, Oei, NY, Soeter, RP, Both, S, van Gerven, JM, Rombouts, SA, et al Dopamine-dependent architecture of cortico-subcortical network connectivity. Cereb Cortex 2013; 23: 1509–16.
39 Lui, S, Li, T, Deng, W, Jiang, L, Wu, Q, Tang, H, et al Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry 2010; 67: 783–92.
40 Sambataro, F, Blasi, G, Fazio, L, Caforio, G, Taurisano, P, Romano, R, et al Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia. Neuropsychopharmacology 2010; 35: 904–12.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
PDF
Supplementary materials

Peters et al. supplementary material
Supplementary Material

 PDF (184 KB)
184 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 139 *
Loading metrics...

* Views captured on Cambridge Core between 2nd January 2018 - 19th June 2018. This data will be updated every 24 hours.

Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode

  • Henning Peters (a1), Valentin Riedl (a2), Andrei Manoliu (a3), Martin Scherr (a4), Dirk Schwerthöffer (a4), Claus Zimmer (a5), Hans Förstl (a4), Josef Bäuml (a4), Christian Sorg (a2) and Kathrin Koch (a6)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *