Skip to main content
×
×
Home

Corpus callosum changes in euthymic bipolar affective disorder

  • Adrian J. Lloyd (a1), Heba E. Ali (a1), David Nesbitt (a1), P. Brian Moore (a1), Allan H. Young (a1) and I. Nicol Ferrier (a1)...
Abstract
Background

Changes in corpus callosum area and thickness have been reported in bipolar disorder. Imaging and limited neuropathological data suggest possible abnormalities in myelination and/or glial function.

Aims

To compare corpus callosum area, thickness and magnetic resonance imaging (MRI) T 1 signal intensity in patients with bipolar disorder and healthy controls.

Method

A total of 48 patients with euthymic bipolar disorder and 46 healthy controls underwent MRI analysis of callosal midsagittal area, callosal thickness and T 1 signal intensity.

Results

The bipolar group had smaller overall and subregional callosal areas and correspondingly reduced callosal width than the control group. Age correlated negatively with callosal area in the control group but not in the bipolar group. Signal intensity was higher in women than in men in both groups. Signal intensity was reduced in women, but not in men, in the bipolar group.

Conclusions

Observed differences probably relate to diagnosis rather than mood state and bipolar disorder appears to result in morphometric change that overrides changes seen in normal ageing. Intensity changes are consistent with possible altered myelination or glial function. A gender-dependent factor appears to operate and to interact with diagnosis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Corpus callosum changes in euthymic bipolar affective disorder
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Corpus callosum changes in euthymic bipolar affective disorder
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Corpus callosum changes in euthymic bipolar affective disorder
      Available formats
      ×
Copyright
Corresponding author
Adrian J. Lloyd, Wolfson Research Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle-upon-Tyne NE4 5PL, UK. Email: a.j.lloyd@ncl.ac.uk
Footnotes
Hide All

This paper has been corrected post-publication, in deviation from print, and in accordance with a correction published in the March issue.

Declaration of interest

None.

Footnotes
References
Hide All
1 Keshavan, MS, Diwadkar, VA, DeBellis, M, Dick, E, Kotwal, R, Rosenberg, DR, et al. Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sci 2002; 70: 1909–22.
2 Atmaca, M, Ozdemir, H, Yildirim, H. Corpus callosum areas in first-episode patients with bipolar disorder. Psychol Med 2001; 37: 699704.
3 Yurgelun-Todd, DA, Silveri, MM, Gruber, SA, Rohan, ML, Pimentel, PJ. White matter abnormalities observed in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord 2007; 9: 504–12.
4 Brambilla, P, Nicoletti, M, Sassi, RB, Mallinger, AG, Frank, E, Keshavan, MS, et al. Corpus callosum signal intensity in patients with bipolar and unipolar disorder. J Neurol Neurosurg Psychiatry 2004; 75: 221–5.
5 Thompson, JM, Gallagher, P, Hughes, JH, Watson, S, Gray, JM, Ferrier, IN, et al. Neurocognitive impairment in euthymic patients with bipolar affective disorder. Br J Psychiatry 2005; 186: 3240.
6 Robinson, LJ, Ferrier, IN. Evolution of cognitive impairment in bipolar disorder: a systematic review of cross-sectional evidence. Bipolar Disord 2006; 8: 103–16.
7 Bearden, CE, Hoffman, KM, Cannon, TD The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord 2001; 3: 106–50.
8 Lopez-Larson, M, Breeze, JL, Kennedy, DN, Hodge, SM, Tang, L, Moore, C, et al. Age-related changes in the corpus callosum in early-onset bipolar disorder assessed using volumetric and cross-sectional measurements. Brain Imaging Behav 2010; 4: 220–31.
9 Walterfang, M, Wood, AG, Barton, S, Velakoulis, D, Chen, J, Reutens, DC, et al. Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 1050–7.
10 Brambilla, P, Nicoletti, MA, Sassi, RB, Mallinger, AG, Frank, E, Kupfer, DJ, et al. Magnetic resonance imaging study of corpus callosum abnormalities in patients with bipolar disorder. Biol Psychiatry 2003; 54: 1294–7.
11 Walterfang, M, Malhi, GS, Wood, AG, Reutens, DC, Chen, J, Barton, S, et al. Corpus callosum size and shape in established bipolar affective disorder. Aust N Z J Psychiatry 2009; 43: 838–45.
12 Arnone, D, McIntosh, AM, Chandra, P, Ebmeier, KP. Meta-analysis of magnetic resonance imaging studies of the corpus callosum in bipolar disorder. Acta Psychiatr Scand 2008; 118: 357–62.
13 Macritchie, KAN, Lloyd, AJ, Bastin, ME, Vasudev, K, Gallagher, P, Eyre, R, et al. White matter microstructural abnormalities in euthymic bipolar disorder. Br J Psychiatry 2010; 196: 52–8.
14 Benedetti, F, Yeh, PH, Bellani, M, Radaelli, D, Nicoletti, MA, Poletti, S, et al. Disruption of white matter integrity in bipolar depression as a possible structural marker of illness. Biol Psychiatry 2011; 69: 309–17.
15 Nelson, HE. National Adult Reading Test. nferNelson, 1982.
16 First, MB, Spitzer, RL, Gibbon, M, Williams, JBW. Structured Clinical Interview for DSM-IV Axis I Disorders, Research Version. American Psychiatric Press, 1997.
17 Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 5662.
18 Young, RC, Biggs, JT, Ziegler, VE, Meyer, DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry 1978; 133: 429–35.
19 Beck, AT, Ward, CH, Mendelson, M, Mock, J, Erbaugh, J. An inventory for measuring depression. Arch Gen Psychiatry 1961; 4: 561–71.
20 Altman, EG, Hedeker, D, Peterson, JL, Davis, JM. The Altman Self-Rating Mania Scale. Biol Psychiatry 1997; 42: 948–55.
21 Folstein, MF, Folstein, SE, McHugh, PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189–98.
22 Witelson, SF. Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 1989; 112: 799835.
23 Peters, M, Oeltze, S, Seminowicz, D, Steinmetz, H, Koeneke, S, Jancke, L. Division of the corpus callosum into subregions. Brain Cogn 2002; 50: 6272.
24 Denenberg, VH, Kertesz, A, Cowell, PE. A factor analysis of the human's corpus callosum. Brain Res 1991; 548: 126–32.
25 Woodruff, PW, Phillips, ML, Rushe, T, Wright, IC, Murray, RM, David, AS. Corpus callosum size and inter-hemispheric function in schizophrenia. Schizophr Res 1997; 23: 189–96.
26 Caetano, SC, Silveira, CM, Kaur, S, Nicoletti, M, Hatch, JP, Brambilla, P, et al. Abnormal corpus callosum myelination in pediatric bipolar patients. J Affect Disord 2008; 108: 297301.
27 Bishop, KM, Wahlsten, D. Sex differences in the human corpus callosum: myth or reality? Neurosci Biobehav Rev 1997; 21: 581601.
28 Versace, A, Almeida, JR, Hassel, S, Walsh, ND, Novelli, M, Klein, CR, et al. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Arch Gen Psychiatry 2008; 65: 1041–52.
29 McIntosh, AM, Munoz, Maniega S, Lymer, GK, McKirdy, J, Hall, J, Sussmann, JE, et al. White matter tractography in bipolar disorder and schizophrenia. Biol Psychiatry 2008; 64: 881092.
30 Ongur, D, Drevets, WC, Price, JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998; 95: 13290–5.
31 Benes, FM, Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001; 25: 127.
32 Regenold, WT, Phatak, P, Marano, CM, Gearhart, L, Viens, CH, Hisley, KC. Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res 2007; 151: 179–88.
33 Bearden, CE, Thompson, PM, Dalwani, M, Hayashi, KM, Lee, AD, Nicoletti, M, et al. Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biol Psychiatry 2007; 62: 716.
34 Lyoo, IK, Dager, SR, Kim, JE, Yoon, SJ, Friedman, SD, Dunner, DL, et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology 2010; 35: 1743–50.
35 Cousins, DA. Lithium, Magnetic Resonance and the Human Brain. Institute of Neuroscience, Newcastle University, 2011 (https://theses.ncl.ac.uk/dspace/bitstream/10443/1205/1/Cousins11.pdf).
36 Rangel-Guerra, RA, Perez-Payan, H, Minkoff, L, Todd, LE. Nuclear magnetic resonance in bipolar affective disorders. Am J Neuroradiol 1983 4: 229–31.
37 Bearden, CE, van, Erp TG, Dutton, RA, Boyle, C, Madsen, S, Luders, E, et al. Mapping corpus callosum morphology in twin pairs discordant for bipolar disorder. Cereb Cortex 2011; 21: 2415–24.
38 Walterfang, M, Wood, AG, Reutens, DC, Wood, SJ, Chen, J, Velakoulis, D, et al. Corpus callosum size and shape in first-episode affective and schizophrenia-spectrum psychosis. Psychiatry Res 2009; 173: 7782.
39 Mackay, CE, Roddick, E, Barrick, TR, Lloyd, AJ, Roberts, N, Crow, TJ, et al. Sex dependence of brain size and shape in bipolar disorder: an exploratory study. Bipolar Disord 2010; 12: 306–11.
40 Schumacher, M, Hussain, R, Gago, N, Oudinet, JP, Mattern, C, Ghoumari, AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6: 122.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
PDF
Supplementary materials

Lloyd et al. supplementary material
Supplementary Table S1

 PDF (52 KB)
52 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 81 *
Loading metrics...

* Views captured on Cambridge Core between 2nd January 2018 - 27th April 2018. This data will be updated every 24 hours.

Corpus callosum changes in euthymic bipolar affective disorder

  • Adrian J. Lloyd (a1), Heba E. Ali (a1), David Nesbitt (a1), P. Brian Moore (a1), Allan H. Young (a1) and I. Nicol Ferrier (a1)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *