Skip to main content Accesibility Help
×
×
Home

Genes in immune pathways associated with abnormal white matter integrity in first-episode and treatment-naïve patients with schizophrenia

  • Bo Xiang (a1), Qiang Wang (a2), Wei Lei (a1), Mingli Li (a3), Yinfei Li (a4), Liansheng Zhao (a5), Xiaohong Ma (a2), Yingcheng Wang (a5), Hua Yu (a4), Xiaojing Li (a4), Yajing Meng (a4), Wanjun Guo (a3), Wei Deng (a3), Hongyan Ren (a4) and Tao Li (a2)...
Abstract
Background

Previous studies have inferred a strong genetic component in schizophrenia. However, the genetic variants involved in the susceptibility to schizophrenia remain unclear.

Aims

To detect potential gene pathways and networks associated with schizophrenia, and to explore the relationship between common and rare variants in these pathways and abnormal white matter integrity in schizophrenia.

Method

The analysis included 100 first-episode treatment-naïve patients with schizophrenia and 140 healthy controls. A network-based analysis was carried out on the data collected from the Psychiatric Genomics Consortium Phase I (PGC-I). Based on our genome-wide association study and whole-exome sequencing data-sets, we performed a gene-set analysis to detect associations between the combining effects of common and rare genetic variants and abnormal white matter integrity in schizophrenia.

Results

Patients had significantly reduced functional anisotropy in the left and right anterior cingulate cortex, left and right precuneus and extra-nuclear (t = 4.61–5.10, PFDR < 0.01), compared with controls. Generated from co-expression network analysis of the PGC-1 summary statistics of schizophrenia, a subnetwork of 207 genes associated with schizophrenia was identified (P < 0.01), and 176 genes were co-expressed in four gene modules. Functional enrichment analysis for genes in each module revealed that the yellow module was enriched with highly co-expressed, innate immune response genes. Furthermore, rare variants of enriched genes in the yellow module were associated with reduced functional anisotropy in the left anterior cingulate cortex (P = 0.006; Padjusted = 0.024) in patients only.

Conclusions

The pathogenesis of schizophrenia may be substantially influenced by genes involved in the immune system, via both pathway and network.

Declaration of interests

None.

Copyright
Corresponding author
Correspondence: Tao Li, Mental Health Center, West China Hospital, Sichuan University, No. 28, Dian Xin Nan Street, Chengdu, 610041, Sichuan, China. Email: litaohx@scu.edu.cn
Footnotes
Hide All
*

These authors contributed equally to this work.

Footnotes
References
Hide All
1van Os, J, Kapur, S. Schizophrenia. Lancet 2009; 374(9690): 635–45.
2McGuffin, P, Gottesman, II, Swerdlow, R, Binder, D, Parker, W. Risk factors for schizophrenia. N Engl J Med 1999; 341(5): 370–1.
3Van Os, J, Rutten, BP, Poulton, R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull 2008; 34(6): 1066–82.
4Ripke, S, Neale, BM, Corvin, A, Walters, JT, Farh, K-H, Holmans, PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511(7510): 421.
5Visscher, PM, Brown, MA, McCarthy, MI, Yang, J. Five years of GWAS discovery. Am J Hum Genet 2012; 90(1): 724.
6Wilkinson, B, Evgrafov, OV, Zheng, D, Hartel, N, Knowles, JA, Graham, NA, et al. Endogenous cell type-specific disrupted in schizophrenia 1 interactomes reveal protein networks associated with neurodevelopmental disorders. Biol Psychiatry 2018, in press.
7Gottesman, II, Gould, TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160(4): 636–45.
8Wang, Q, Xiang, B, Deng, W, Wu, J, Li, M, Ma, X, et al. Genome-wide association analysis with gray matter volume as a quantitative phenotype in first-episode treatment-naive patients with schizophrenia. PLoS One 2013; 8(9): e75083.
9Dong, D, Wang, Y, Chang, X, Jiang, Y, Klugah-Brown, B, Luo, C, et al. Shared abnormality of white matter integrity in schizophrenia and bipolar disorder: a comparative voxel-based meta-analysis. Schizophr Res 2017; 185: 4150.
10Wang, Q, Cheung, C, Deng, W, Li, M, Huang, C, Ma, X, et al. Fronto-parietal white matter microstructural deficits are linked to performance IQ in a first-episode schizophrenia Han Chinese sample. Psychol Med 2013; 43(10): 2047–56.
11Kunimatsu, N, Aoki, S, Kunimatsu, A, Abe, O, Yamada, H, Masutani, Y, et al. Tract-specific analysis of white matter integrity disruption in schizophrenia. Psychiatry Res 2012; 201(2): 136–43.
12Skudlarski, P, Schretlen, DJ, Thaker, GK, Stevens, MC, Keshavan, MS, Sweeney, JA, et al. Diffusion tensor imaging white matter endophenotypes in patients with schizophrenia or psychotic bipolar disorder and their relatives. Am J Psychiatry 2013; 170(8): 886–98.
13Schijven, D, Kofink, D, Tragante, V, Verkerke, M, Pulit, SL, Kahn, RS, et al. Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling. Schizophr Res 2018; 199: 195202.
14Ripke, S, Sanders, AR, Kendler, KS, Levinson, DF, Sklar, P, Holmans, PA, et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43(10): 969.
15Langfelder, P, Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9(1): 559.
16First, MB, Spitzer, RL, Gibbon, M, Williams, JB. User's Guide for the Structured Clinical Interview for DSM-IV Axis I Disorders SCID-I: Clinician Version. American Psychiatric Association, 1997.
17Kay, SR, Flszbein, A, Opfer, LA. The Positive And Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13(2): 261.
18Buckner, RL, Head, D, Parker, J, Fotenos, AF, Marcus, D, Morris, JC, et al. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 2004; 23(2): 724–38.
19Xiang, B, Wu, J-y, Wang, Q, Li, M-L, Jiang, L-J, Deng, W, et al. Cortical surface area correlates with STON2 gene Ser307Pro polymorphism in first-episode treatment-naive patients with schizophrenia. PLoS One 2013; 8(6): e64090.
20Price, AL, Patterson, NJ, Plenge, RM, Weinblatt, ME, Shadick, NA, Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38(8): 904–9.
21Li, H, Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009; 25(14): 1754–60.
22McKenna, A, Hanna, M, Banks, E, Sivachenko, A, Cibulskis, K, Kernytsky, A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20(9): 1297–303.
23Liu, JZ, Mcrae, AF, Nyholt, DR, Medland, SE, Wray, NR, Brown, KM, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet 2010; 87(1): 139–45.
24Menche, J, Sharma, A, Kitsak, M, Ghiassian, SD, Vidal, M, Loscalzo, J, et al. Uncovering disease-disease relationships through the incomplete interactome. Science 2015; 347(6224): 1257601.
25Wang, L, Matsushita, T, Madireddy, L, Mousavi, P, Baranzini, S. PINBPA: Cytoscape app for network analysis of GWAS data. Bioinformatics 2015; 31(2): 262–4.
26Wang, J, Duncan, D, Shi, Z, Zhang, B. WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013; 41(W1): W7783.
27Dougherty, JD, Schmidt, EF, Nakajima, M, Heintz, N. Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Res 2010; 38(13): 4218–30.
28Wu, MC, Kraft, P, Epstein, MP, Taylor, DM, Chanock, SJ, Hunter, DJ, et al. Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet 2010; 86(6): 929–42.
29Kunimatsu, N, Aoki, S, Kunimatsu, A, Abe, O, Yamada, H, Masutani, Y, et al. Tract-specific analysis of white matter integrity disruption in schizophrenia. Psychiatry Res 2012; 201(2): 136–43.
30Lei, W, Li, N, Deng, W, Li, M, Huang, C, Ma, X, et al. White matter alterations in first episode treatment-naïve patients with deficit schizophrenia: a combined VBM and DTI study. Sci Rep 2015; 5: 12994.
31Gupta, CN, Chen, J, Liu, J, Damaraju, E, Wright, C, Perrone-Bizzozero, NI, et al. Genetic markers of white matter integrity in schizophrenia revealed by parallel ICA. Front Hum Neurosci 2015; 9: 100.
32Han, S, Yang, B-Z, Kranzler, HR, Liu, X, Zhao, H, Farrer, LA, et al. Integrating GWASs and human protein interaction networks identifies a gene subnetwork underlying alcohol dependence. Am J Hum Genet 2013; 93(6): 1027–34.
33Andrews, JL, Fernandez-Enright, F. Investigation of genetic variants in ubiquitin enzyme genes involved in the modulation of neurodevelopmental processes: a role in schizophrenia susceptibility? Genet Res (Camb) 2014; 96: e15.
34Li, X, Zhang, W, Lencz, T, Darvasi, A, Alkelai, A, Lerer, B, et al. Common variants of IRF3 conferring risk of schizophrenia. J Psychiatr Res 2015; 64: 6773.
35Shiina, T, Hosomichi, K, Inoko, H, Kulski, JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet 2009; 54(1): 1539.
36McAllister, AK. Major histocompatibility complex I in brain development and schizophrenia. Biol Psychiatry 2014; 75(4): 262–8.
37Collins, SE, Noyce, RS, Mossman, KL. Innate cellular response to virus particle entry requires IRF3 but not virus replication. J Virol 2004; 78(4): 1706–17.
38Melnik, A, Tauber, S, Dumrese, C, Ullrich, O, Wolf, SA. Murine adult neural progenitor cells alter their proliferative behavior and gene expression after the activation of Toll-like-receptor 3. Eur J Microbiol Immunol 2012; 2(3): 239–48.
39Li, X, Zhang, W, Lencz, T, Darvasi, A, Alkelai, A, Lerer, B, et al. Common variants of IRF3 conferring risk of schizophrenia. J Psychiatr Res 2015; 64: 6773.
40Levenga, J, Wong, H, Milstead, RA, Keller, BN, LaPlante, LE, Hoeffer, CA. AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity. eLife 2017; 6: e30640.
41Liu, S, Ma, Y, Lee, E. NMDA receptor signaling mediates the expression of protein inhibitor of activated STAT1 (PIAS1) in rat hippocampus. Neuropharmacology 2013; 65: 101–13.
42Bulayeva, K, Lesch, K-P, Bulayev, O, Walsh, C, Glatt, S, Gurgenova, F, et al. Genomic structural variants are linked with intellectual disability. J Neural Transm 2015; 122(9): 1289–301.
43Alsayegh, KN, Sheridan, SD. Knockdown of CDK2AP1 in human embryonic stem cells reduces the threshold of differentiation. PLoS One 2018; 13(5): e0196817.
44Manolio, TA, Collins, FS, Cox, NJ, Goldstein, DB, Hindorff, LA, Hunter, DJ, et al. Finding the missing heritability of complex diseases. Nature 2009; 461(7265): 747–53.
45Genovese, G, Fromer, M, Stahl, EA, Ruderfer, DM, Chambert, K, Landén, M, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci 2016; 19(11): 1433.
46Brown, AS. The environment and susceptibility to schizophrenia. Prog Neurobiol 2011; 93(1): 2358.
47Bauman, MD, Iosif, A-M, Smith, SE, Bregere, C, Amaral, DG, Patterson, PH. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry 2014; 75(4): 332–41.
48Li, Q, Leung, Y, Zhou, I, Ho, L, Kong, W, Basil, P, et al. Dietary supplementation with n-3 fatty acids from weaning limits brain biochemistry and behavioural changes elicited by prenatal exposure to maternal inflammation in the mouse model. Transl Psychiatry 2015; 5(9): e641.
49Li, Q, Cheung, C, Wei, R, Cheung, V, Hui, ES, You, Y, et al. Voxel-based analysis of postnatal white matter microstructure in mice exposed to immune challenge in early or late pregnancy. Neuroimage 2010; 52(1): 18.
50Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 2015; 18(2): 199209.
51Jarome, TJ, Lubin, FD. Histone lysine methylation: critical regulator of memory and behavior. Rev Neurosci 2013; 24(4): 375–87.
52Ibi, D, González-Maeso, J. Epigenetic signaling in schizophrenia. Cell Signal 2015; 27(10): 2131–6.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Xiang et al. supplementary material
Xiang et al. supplementary material 1

 Word (391 KB)
391 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Genes in immune pathways associated with abnormal white matter integrity in first-episode and treatment-naïve patients with schizophrenia

  • Bo Xiang (a1), Qiang Wang (a2), Wei Lei (a1), Mingli Li (a3), Yinfei Li (a4), Liansheng Zhao (a5), Xiaohong Ma (a2), Yingcheng Wang (a5), Hua Yu (a4), Xiaojing Li (a4), Yajing Meng (a4), Wanjun Guo (a3), Wei Deng (a3), Hongyan Ren (a4) and Tao Li (a2)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *