Skip to main content
×
×
Home

Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia

  • Killian A. Welch (a1), Andrew C. Stanfield (a2), Andrew M. McIntosh (a2), Heather C. Whalley (a2), Dominic E. Job (a2), Thomas W. Moorhead (a2), David G. C. Owens (a2), Stephen M. Lawrie (a2) and Eve C. Johnstone (a2)...
Abstract
Background

No longitudinal study has yet examined the association between substance use and brain volume changes in a population at high risk of schizophrenia.

Aims

To examine the effects of cannabis on longitudinal thalamus and amygdala-hippocampal complex volumes within a population at high risk of schizophrenia.

Method

Magnetic resonance imaging scans were obtained from individuals at high genetic risk of schizophrenia at the point of entry to the Edinburgh High-Risk Study (EHRS) and approximately 2 years later. Differential thalamic and amygdala-hippocampal complex volume change in high-risk individuals exposed (n = 25) and not exposed (n = 32) to cannabis in the intervening period was investigated using repeated-measures analysis of variance.

Results

Cannabis exposure was associated with bilateral thalamic volume loss. This effect was significant on the left (F = 4.47, P = 0.04) and highly significant on the right (F=7.66, P=0.008). These results remained significant when individuals using other illicit drugs were removed from the analysis.

Conclusions

These are the first longitudinal data to demonstrate an association between thalamic volume loss and exposure to cannabis in currently unaffected people at familial high risk of developing schizophrenia. This observation may be important in understanding the link between cannabis exposure and the subsequent development of schizophrenia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia
      Available formats
      ×
Copyright
Corresponding author
Killian A. Welch, Robert Ferguson Unit, Astley Ainslee Hospital, Edinburgh and Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK. Email: kwelch1@staffmail.ed.ac.uk
Footnotes
Hide All

Declaration of interest

None.

Footnotes
References
Hide All
1 Crespo-Facorro, B, Roiz-Santiáñez, R, Pelayo-Terán, JM, Rodríguez-Sánchez, JM, Pérez-Iglesias, R, González-Blanch, C, et al. Reduced thalamic volume in first-episode non-affective psychosis: correlations with clinical variables, symptomatology and cognitive functioning. Neuroimage 2007; 35: 1613–23.
2 Shenton, ME, Dickey, CC, Frumin, M, McCarley, RW. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 152.
3 Arseneault, L, Cannon, M, Witton, J, Murray, RM. Causal association between cannabis and psychosis: examination of the evidence. Br J Psychiatry 2004; 184: 110–7.
4 Martín-Santos, R, Fagundo, AB, Crippa, JA, Atakan, Z, Bhattacharyya, S, Allen, P, et al. Neuroimaging in cannabis use: a systematic review of the literature. Psychol Med 2010; 40: 383–98.
5 Rais, M, Cahn, W, Van Haren, N, Schnack, H, Caspers, E, Hulshoff Pol, H, et al. Excessive brain volume loss over time in cannabis-using first-episode schizophrenia patients. Am J Psychiatry 2008; 165: 490–6.
6 Welch, KA, McIntosh, AM, Job, DE, Whalley, HC, Moorhead, TW, Hall, J, et al. The impact of substance use on brain structure in people at high risk of developing schizophrenia. Schizophr Bull 2010; Mar 11. Epub ahead of print.
7 Hodges, A, Byrne, M, Grant, E, Johnstone, E. People at risk of schizophrenia. Sample characteristics of the first 100 cases in the Edinburgh High-Risk Study. Br J Psychiatry 1999; 174: 547–53.
8 Lawrie, SM, Whalley, HC, Abukmeil, SS, Kestelman, JN, Donnelly, L, Miller, P, et al. Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry 2001; 49: 811–23.
9 McDonald, C, Bullmore, E, Sham, P, Chitnis, X, Suckling, J, MacCabe, J, et al. Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder. Computational morphometry study. Br J Psychiatry 2005; 186: 369–77.
10 McIntosh, AM, Job, DE, Moorhead, WJ, Harrison, LK, Whalley, HC, Johnstone, EC, et al. Genetic liability to schizophrenia or bipolar disorder and its relationship to brain structure. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 7683.
11 Chan, RCK, Di, X, McAlonan, GM, Gong, Q. Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr Bull 2011; 37: 177–88.
12 Sví$znenská, I, Dubový, P, $Snulcová, A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures: a short review. Pharmacol Biochem Behav 2008; 90: 501–11.
13 Shenton, ME, Dickey, CC, Frumin, M, McCarley, RW. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 152.
14 Mathew, RJ, Wilson, WH, Coleman, RE, Turkington, TG, DeGrado, TR. Marijuana intoxication and brain activation in marijuana smokers. Life Sci 1997; 60: 2075–89.
15 O'Leary, DS, Block, RI, Koeppel, JA, Flaum, M, Schultz, SK, Andreasen, NC, et al. Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology 2002; 26: 802–16.
16 Freedland, CS, Whitlow, CT, Miller, MD, Porrino, LJ. Dose-dependent effects of $DL9-tetrahydrocannabinol on rates of local cerebral glucose utilization in rat. Synapse 2002; 45: 134–42.
17 Lawrie, SM, McIntosh, AM, Hall, J, Owens, DGC, Johnstone, EC. Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull 2008; 34: 330–40.
18 Eggan, SM, Lewis, DA. Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis. Cereb Cortex 2007; 17: 175–91.
19 Whalley, HC, Kestelman, JN, Rimmington, JE, Kelso, A, Abukmeil, SS, Best, JJK, et al. Methodological issues in volumetric magnetic resonance imaging of the brain in the Edinburgh High Risk Project. Psychiatr Res 1999; 91: 3144.
20 Lawrie, SM, Whalley, HC, Abukmeil, SS, Kestelman, JN, Donnelly, L, Miller, P, et al. Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry 2001; 49: 811–23.
21 de Win, MML, Jager, G, Booij, J, Reneman, L, Schilt, T, Lavini, C, et al. Neurotoxic effects of ecstasy on the thalamus. Br J Psychiatry 2008; 193: 289–96.
22 Rust, J. The Rust Inventory of Schizotypal Cognitions (RISC). Schizophr Bull 1988; 14: 317–22.
23 Linszen, DH, Dingemans, PM, Lenior, ME. Cannabis abuse and the course of recent-onset schizophrenic disorders. Arch Gen Psychiatry 1994; 51: 273–9.
24 Zammit, S, Moore, THM, Lingford-Hughes, A, Barnes, TRE, Jones, PB, Burke, M, et al. Effects of cannabis use on outcomes of psychotic disorders: systematic review. Br J Psychiatry 2008; 193: 357–63.
25 Byne, W, Hazlett, EA, Buchsbaum, MS, Kemether, E. The thalamus and schizophrenia: current status of research. Acta Neuropathol 2009; 117: 347–68.
26 Friston, KJ, Frith, CD. Schizophrenia: a disconnection syndrome? Clin Neurosci 1995; 3: 8997.
27 Andreasen, NC, Paradiso, S, O'Leary, DS. ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 1998; 24: 203–18.
28 Andreasen, NC, Nopoulos, P, O'Leary, DS, Miller, DD, Wassink, T, Flaum, M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry 1999; 46: 908–20.
29 Whalley, HC, Simonotto, E, Flett, S, Marshall, I, Ebmeier, KP, Owens, DGC, et al. fMRI correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. Brain 2004; 127: 478–90.
30 Byrne, M, Hodges, A, Grant, E, Owens, DC, Johnstone, EC. Neuropsychological assessment of young people at high genetic risk for developing schizophrenia compared with controls: preliminary findings of the Edinburgh High Risk Study (EHRS). Psychol Med 1999; 29: 1161–73.
31 O'Connor, M, Harris, JM, McIntosh, AM, Owens, DGC, Lawrie, SM, Johnstone, EC. Specific cognitive deficits in a group at genetic high risk of schizophrenia. Psychol Med 2009; 39: 1649–55.
32 Carlsson, M, Carlsson, A. Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull 1990; 16: 425–32.
33 Jones, EG. Cortical development and thalamic pathology in schizophrenia. Schizophr Bull 1997; 23: 483501.
34 Mega, MS, Cummings, JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 1994; 6: 358–70.
35 Coscia, DM, Narr, KL, Robinson, DG, Hamilton, LS, Sevy, S, Burdick, KE, et al. Volumetric and shape analysis of the thalamus in first-episode schizophrenia. Hum Brain Mapp 2009; 30: 1236–45.
36 Lawrie, SM, Whalley, HC, Abukmeil, SS, Kestelman, JN, Miller, P, Best, JJK, et al. Temporal lobe volume changes in people at high risk of schizophrenia with psychotic symptoms. Br J Psychiatry 2002; 181: 138–43.
37 Harms, MP, Wang, L, Mamah, D, Barch, DM, Thompson, PA, Csernansky, JG. Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. J Neurosci 2007; 27: 13835–42.
38 Cronenwett, WJ, Csernansky, J. Thalamic pathology in schizophrenia. In Behavioral Neurobiology of Schizophrenia and Its Treatment (eds Kendall, DA, Alexander, S): 509–28. Springer-Verlag, 2010.
39 Young, KA, Manaye, KF, Liang, CL, Hicks, PB, German, DC. Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 2000; 47: 944–53.
40 Sim, K, Cullen, T, Ongur, D, Heckers, S. Testing models of thalamic dysfunction in schizophrenia using neuroimaging. J Neural Transm 2006; 113: 907–28.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia

  • Killian A. Welch (a1), Andrew C. Stanfield (a2), Andrew M. McIntosh (a2), Heather C. Whalley (a2), Dominic E. Job (a2), Thomas W. Moorhead (a2), David G. C. Owens (a2), Stephen M. Lawrie (a2) and Eve C. Johnstone (a2)...
Submit a response

eLetters

Cannabis use and thalamic volume in people at familial high risk of schizophrenia

Om Prakash
02 November 2011

To the editor:

People at high risk of schizophrenia with psychotic symptoms show (1)reductions in temporal lobe volumes. The article by Welch et al (2) attempted well to demonstrate an association between thalamic volume loss and exposure to cannabis in currently unaffected people at familial high risk of developing schizophrenia. The results of the study are important as it firstly examined the association between substance use and brain volume changes.

However, the authors' conclusion that cannabis exposure has etiological association with thalamic volume loss should be cautiously interpreted. Firstly, the argument that the groups with 'no cannabis use' and 'cannabis use' had no difference in psychotic symptoms at baseline does not seem to be true. The observable difference in Rust Inventory of Schizotypal Cognitions baseline score among the groups in Table 1 (page 3 of article), with higher scores in 'Cannabis Use' group (27.92 Vs 25.44) indicated that those who are prone to psychosis are more likely to use cannabis. The absence of statistically significant difference could be dueto small sample size. Only test of statistical equivalence can confirm theabsence of difference in such situations. Also, the standard deviations inTable 2 (page 3 of article) are several times of the means, indicating highly skewed data. The statistically significant results using parametrictests for such a sample should be taken with a pinch of salt.

References:1.Lawrie SM, Whalley HC, Abukmeil SS, Kestelman JN, Miller P, Best JJ, Owens DG, Johnstone EC. Temporal lobe volume changes in people at high risk of schizophrenia with psychotic symptoms. Br J Psychiatry. 2002; 181:138-43.2.Welch KA, Stanfield AC, McIntosh AM, Whalley HC, Job DE, Moorhead TW, Owens DG, Lawrie SM, Johnstone EC. Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia. Br J Psychiatry. bjp.bp.110.090175; published ahead of print September 8, 2011, doi:10.1192/bjp.bp.110.090175.

... More

Conflict of interest: None declared

Write a reply

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *