Skip to main content Accessibility help
×
Home

Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes

  • Nikolaos Koutsouleris (a1), Gisela J. E. Schmitt (a1), Christian Gaser (a2), Ronald Bottlender (a1), Johanna Scheuerecker (a1), Philip McGuire (a3), Bernhard Burgermeister (a4), Christine Born (a5), Maximilian Reiser (a5), Hans-Jürgen Möller (a1) and Eva M. Meisenzahl (a1)...

Abstract

Background

Structural brain abnormalities have been described in individuals with an at-risk mental state for psychosis. However, the neuroanatomical underpinnings of the early and late at-risk mental state relative to clinical outcome remain unclear.

Aims

To investigate grey matter volume abnormalities in participants in a putatively early or late at-risk mental state relative to their prospective clinical outcome.

Method

Voxel-based morphometry of magnetic resonance imaging data from 20 people with a putatively early at-risk mental state (ARMS–E group) and 26 people with a late at-risk mental state (ARMS–L group) as well as from 15 participants with at-risk mental states with subsequent disease transition (ARMS–T group) and 18 participants without subsequent disease transition (ARMS–NT group) were compared with 75 healthy volunteers.

Results

Compared with healthy controls, ARMS–L participants had grey matter volume losses in frontotemporolimbic structures. Participants in the ARMS–E group showed bilateral temporolimbic alterations and subtle prefrontal abnormalities. Participants in the ARMS–T group had prefrontal alterations relative to those in the ARMS–NT group and in the healthy controls that overlapped with the findings in the ARMS–L group.

Conclusions

Brain alterations associated with the early at-risk mental state may relate to an elevated susceptibility to psychosis, whereas alterations underlying the late at-risk mental state may indicate a subsequent transition to psychosis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes
      Available formats
      ×

Copyright

Corresponding author

Eva M. Meisenzahl, Clinic of Psychiatry and Psychotherapy, Luwdig-Maxmilians-University, Nussbaumstr. 7, 80336 Munich, Germany. Email: Eva.Meisenzahl@med.uni-muenchen.de

Footnotes

Hide All

Declaration of interest

None.

Footnotes

References

Hide All
1 Meisenzahl, EM, Koutsouleris, N, Gaser, C, Bottlender, R, Schmitt, GJE, McGuire, P, et al. Structural brain alterations in subjects at high-risk of psychosis: a voxel-based morphometric study. Schizophr Res 2008; 102: 150–62.
2 Borgwardt, SJ, Riecher-Rössler, A, Dazzan, P, Chitnis, X, Aston, J, Drewe, M, et al. Regional gray matter volume abnormalities in the at risk mental state. Biol Psychiatry 2007; 61: 1148–56.
3 Borgwardt, SJ, McGuire, PK, Aston, J, Berger, G, Dazzan, P, Gschwandtner, U, et al. Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. Br J Psychiatry 2007; 191 (suppl 51): s6975.
4 Job, DE, Whalley, HC, Johnstone, EC, Lawrie, SM. Grey matter changes over time in high risk subjects developing schizophrenia. Neuroimage 2005; 25: 1023–30.
5 Pantelis, C, Velakoulis, D, McGorry, PD, Wood, SJ, Suckling, J, Phillips, LJ, et al. Neuroanatomical abnormalities before and after onset of psychosis: a crosssectional and longitudinal MRI comparison. Lancet 2003; 361: 281–8.
6 Job, DE, Whalley, HC, McConnell, S, Glabus, M, Johnstone, EC, Lawrie, SM. Voxel-based morphometry of grey matter densities in subjects at high risk of schizophrenia. Schizophr Res 2003; 64: 113.
7 Seidman, LJ, Pantelis, C, Keshavan, MS, Faraone, SV, Goldstein, JM, Horton, NJ, et al. A review and new report of medial temporal lobe dysfunction as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric family study of the parahippocampal gyrus. Schizophr Bull 2003; 29: 803–30.
8 Lawrie, SM, Whalley, H, Kestelman, JN, Abukmeil, SS, Byrne, M, Hodges, A, et al. Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 1999; 353: 30–3.
9 Meisenzahl, EM, Koutsouleris, N, Bottlender, R, Scheuerecker, J, Jäger, M, Teipel, SJ, et al. Structural brain alterations at different stages of schizophrenia: a voxel-based morphometric study. Schizophr Res 2008; 104: 4460.
10 Koutsouleris, N, Gaser, C, Jäger, M, Bottlender, R, Frodl, T, Holzinger, S, et al. Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. Neuroimage 2008; 39: 1600–12.
11 Honea, R, Crow, TJ, Passingham, D, Mackay, CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005; 162: 2233–45.
12 Harris, JM, Moorhead, TWJ, Miller, P, McIntosh, AM, Bonnici, HM, Owens, DGC, et al. Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biol Psychiatry 2007; 62: 722–9.
13 Phillips, LJ, McGorry, PD, Yung, AR, McGlashan, TH, Cornblatt, B, Klosterkötter, J. Prepsychotic phase of schizophrenia and related disorders: recent progress and future opportunities. Br J Psychiatry 2005; 187 (suppl 48): s3344.
14 Pantelis, C, Yücel, M, Wood, SJ, Velakoulis, D, Sun, D, Berger, G, et al. Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 2005; 31: 672–96.
15 Häfner, H, Maurer, K. Early detection of schizophrenia: current evidence and future perspectives. World Psychiatry 2006; 5: 130–8.
16 Ruhrmann, S, Schultze-Lutter, F, Klosterkötter, J. Early detection and intervention in the initial prodromal phase of schizophrenia. Pharmacopsychiatry 2003; 36 (Suppl 3): s1627.
17 Hambrecht, M, Lammertink, M, Klosterkötter, J, Matuschek, E, Pukrop, R. Subjective and objective neuropsychological abnormalities in a psychosis prodrome clinic. Br J Psychiatry 2002; 181 (suppl 43): s307.
18 Klosterkötter, J, Schultze-Lutter, F, Gross, G. Early self-experienced neuropsychological deficits and subsequent schizophrenic diseases: an 8-year average follow-up prospective study. Acta Psychiatrica Scandinavica 1997; 95: 396404.
19 Yung, AR, Phillips, LJ, McGorry, PD, McFarlane, CA, Francey, S, Harrigan, S, et al. Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br J Psychiatry 1998; 172 (suppl 33): 1420.
20 Yung, AR, Phillips, LJ, Yuen, HP, Francey, SM, McFarlane, CA, Hallgren, M, et al. Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 2003; 60: 2132.
21 Yung, AR, Phillips, LJ, Yuen, HP, McGorry, PD. Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features. Schizophr Res 2004; 67: 131–42.
22 Johns, LC, Cannon, M, Singleton, N, Murray, RM, Farrell, M, Brugha, T, et al. Prevalence and correlates of self-reported psychotic symptoms in the British population. Br J Psychiatry 2004; 185: 298305.
23 Johns, LC, Nazroo, JY, Bebbington, P, Kuipers, E. Occurrence of hallucinatory experiences in a community sample and ethnic variations. Br J Psychiatry 2002; 180: 174–8.
24 Phillips, LJ, Velakoulis, D, Pantelis, C, Wood, S, Yuen, HP, Yung, AR, et al. Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophr Res 2002; 58: 145–58.
25 Frost, DO, Tamminga, CA, Medoff, DR, Caviness, V, Innocenti, G, Carpenter, WT. Neuroplasticity and schizophrenia. Biol Psychiatry 2004; 56: 540–3.
26 Klosterkötter, J, Hellmich, M, Steinmeyer, EM, Schultze-Lutter, F. Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry 2001; 58: 158–64.
27 Hurlemann, R, Jessen, F, Wagner, M, Frommann, I, Ruhrmann, S, Brockhaus, A, et al. Interrelated neuropsychological and anatomical evidence of hippocampal pathology in the at-risk mental state. Psychol Med 2008; 38: 843–51.
28 Quednow, BB, Frommann, I, Berning, J, Kühn, KU, Maier, W, Wagner, M. Impaired sensorimotor gating of the acoustic startle response in the prodrome of schizophrenia. Biol Psychiatry 2008; 64: 766–73.
29 Frommann, I, Brinkmeyer, J, Ruhrmann, S, Hack, E, Brockhaus-Dumke, A, Bechdolf, A, et al. Auditory P300 in individuals clinically at risk for psychosis. Int J Psychophysiol 2008; 70: 192205.
30 Job, DE, Whalley, HC, McConnell, S, Glabus, M, Johnstone, EC, Lawrie, SM. Structural gray matter differences between first-episode schizophrenics and normal controls using voxel-based morphometry. Neuroimage 2002; 17 880–9.
31 Lawrie, SM, Whalley, HC, Abukmeil, SS, Kestelman, JN, Donnelly, L, Miller, P, et al. Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry 2001; 49: 811823.
33 Häfner, H, Maurer, K, Ruhrmann, S, Bechdolf, A, Klosterkötter, J, Wagner, M, et al. Early detection and secondary prevention of psychosis: facts and visions. Eur Arch Psychiatry Clin Neurosci 2004; 254: 117–28.
33 Kojoh, K, Hirasawa, S. The Bonn Scale for the Assessment of Basic Symptoms (BSABS). Arch Psychiatr Diagn Clin Eval 1990; 4: 587–97.
34 Schultze-Lutter, F, Ruhrmann, S, Picker, H, von Reventlow, HG, Daumann, B, Brockhaus-Dumke, A, et al. Relationship between subjective and objective cognitive function in the early and late prodrome. Br J Psychiatry 2007; 191 (suppl 51): s4351.
35 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder (4th edn) (DSM–IV). APA, 1994.
36 Schultze-Lutter, F, Ruhrmann, S, Picker, H, von Reventlow, HG, Brockhaus-Dumke, A, Klosterkötter, J. Basic symptoms in early psychotic and depressive disorders. Br J Psychiatry 2007; 191 (suppl 51): s317.
37 Lehrl, S. Mehrfachwahl-Wortschatz-Intelligenztest MWT-B (5th edn). Spitta Verlag, 2005.
38 Kay, SR, Fiszbein, A, Opler, LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–76.
39 Montgomery, SA, Åsberg, M. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134: 382–9.
40 World Health Organization. The ICD–10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. WHO, 1992.
41 Ashburner, J, Friston, KJ. Unified segmentation. Neuroimage 2005; 26: 839–51.
42 Bach Cuadra, M, Cammoun, L, Butz, T, Cuisenaire, O, Thiran, JP. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 2005; 24: 1548–65.
43 Hayasaka, S, Phan, KL, Liberzon, I, Worsley, KJ, Nichols, TE. Nonstationary cluster-size inference with random field and permutation methods. Neuroimage 2004; 22: 676–87.
44 Worsley, K, Marrett, S, Neelin, P, Vandal, A, Evans, KFA. A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapping 1996; 4: 5873.
45 Tzourio-Mazoyer, N, Landeau, B, Papathanassiou, D, Crivello, F, Etard, O, Delcroix, N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15: 273–89.
46 Yücel, M, Wood, SJ, Phillips, LJ, Stuart, GW, Smith, DJ, Yung, A, et al. Morphology of the anterior cingulate cortex in young men at ultra-high risk of developing a psychotic illness. Br J Psychiatry 2003; 182: 518–24.
47 Pantelis, C, Yücel, M, Wood, SJ, McGorry, PD, Velakoulis, D. Early and late neurodevelopmental disturbances in schizophrenia and their functional consequences. Aust N Z J Psychiatry 2003; 37: 399406.
48 Loranger, AW. Sex difference in age at onset of schizophrenia. Arch Gen Psychiatry 1984; 41: 157–61.
49 Maier, W, Cornblatt, BA, Merikangas, KR. Transition to schizophrenia and related disorders: toward a taxonomy of risk. Schizophr Bull 2003; 29: 693701.
50 Wolf, DH, Gur, RC, Valdez, JN, Loughead, J, Elliott, MA, Gur, RE, et al. Alterations of frontotemporal connectivity during word encoding in schizophrenia. Psychiatry Res 2007; 154: 221–32.
51 Weiss, AP, Heckers, S. Neuroimaging of declarative memory in schizophrenia. Scand J Psychol 2001; 42: 239–50.
52 Brewer, WJ, Francey, SM, Wood, SJ, Jackson, HJ, Pantelis, C, Phillips, LJ, et al. Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. Am J Psychiatry 2005; 162: 71–8.
53 Wood, SJ, Brewer, WJ, Koutsouradis, P, Phillips, LJ, Francey, SM, Proffitt, TM, et al. Cognitive decline following psychosis onset: data from the PACE clinic. Br J Psychiatry 2007; 191 (suppl 51): s527.
54 Kuroki, N, Shenton, ME, Salisbury, DF, Hirayasu, Y, Onitsuka, T, Ersner-Hershfield, H, et al. Middle and inferior temporal gyrus gray matter volume abnormalities in first-episode schizophrenia: an MRI study. Am J Psychiatry 2006; 163: 2103–10.
55 Onitsuka, T, Shenton, ME, Salisbury, DF, Dickey, CC, Kasai, K, Toner, SK, et al. Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatry 2004; 161: 1603–11.
56 Spencer, MD, Moorhead, TWJ, McIntosh, AM, Stanfield, AC, Muir, WJ, Hoare, P, et al. Grey matter correlates of early psychotic symptoms in adolescents at enhanced risk of psychosis: a voxel-based study. Neuroimage 2007; 35: 1181–91.
57 Lymer, GKS, Job, DE, William, T, Moorhead, J, McIntosh, AM, Owens, DGC, et al. Brain–behaviour relationships in people at high genetic risk of schizophrenia. Neuroimage 2006; 33: 275–85.
58 Rajarethinam, R, DeQuardo, JR, Miedler, J, Arndt, S, Kirbat, R, Brunberg, JA, et al. Hippocampus and amygdala in schizophrenia: assessment of the relationship of neuroanatomy to psychopathology. Psychiatry Res 2001; 108: 7987.
59 Shenton, ME, Kikinis, R, Jolesz, FA, Pollak, SD, LeMay, M, Wible, CG, et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med 1992; 327: 604–12.
60 Schultze-Lutter, F, Ruhrmann, S, Berning, J, Maier, W, Klosterkötter, J. Basic symptoms and ultrahigh risk criteria: symptom development in the initial prodromal state. Schizophr Bull 2008; June 25 (epub ahead of print).
61 Goldstein, JM, Seidman, LJ, O'Brien, LM, Horton, NJ, Kennedy, DN, Makris, N, et al. Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry 2002; 59: 154–64.
62 Walder, DJ, Seidman, LJ, Makris, N, Tsuang, MT, Kennedy, DN, Goldstein, JM. Neuroanatomic substrates of sex differences in language dysfunction in schizophrenia: a pilot study. Schizophr Res 2007; 90: 295301.
63 Goldstein, JM, Seidman, LJ, Goodman, JM, Koren, D, Lee, H, Weintraub, S, et al. Are there sex differences in neuropsychological functions among patients with schizophrenia? Am J Psychiatry 1998; 155: 1358–64.
64 Goldstein, JM, Seidman, LJ, Santangelo, S, Knapp, PH, Tsuang, MT. Are schizophrenic men at higher risk for developmental deficits than schizophrenic women? Implications for adult neuropsychological functions. J Psychiatr Res 1994; 28: 483–98.
65 Davatzikos, C. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 2004; 23: 1720.
66 Moorhead, TWJ, Job, DE, Spencer, MD, Whalley, HC, Johnstone, EC, Lawrie, SM. Empirical comparison of maximal voxel and non-isotropic adjusted cluster extent results in a voxel-based morphometry study of comorbid learning disability with schizophrenia. Neuroimage 2005; 28: 544–52.
Type Description Title
PDF
Supplementary materials

Koutsouleris et al. supplementary material
Supplementary Material

 PDF (632 KB)
632 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Neuroanatomical correlates of different vulnerability states for psychosis and their clinical outcomes

  • Nikolaos Koutsouleris (a1), Gisela J. E. Schmitt (a1), Christian Gaser (a2), Ronald Bottlender (a1), Johanna Scheuerecker (a1), Philip McGuire (a3), Bernhard Burgermeister (a4), Christine Born (a5), Maximilian Reiser (a5), Hans-Jürgen Möller (a1) and Eva M. Meisenzahl (a1)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *