Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-31T23:13:00.543Z Has data issue: false hasContentIssue false

Serotonin Receptor Subtypes: Implications for Psychopharmacology

Published online by Cambridge University Press:  06 August 2018

P. J. Cowen*
Affiliation:
MRC Unit of Clinical Pharmacology, and University Department of Psychiatry, Littlemore Hospital, Oxford OX4 4XN

Abstract

Serotonin (5-HT) interacts with multiple brain 5-HT receptor subtypes to influence a wide range of behaviours. Three main families of 5-HT receptors (5-HT1, 5-HT2 and 5-HT3) have been described which differ in their binding affinity for selective ligands, their receptor-effector coupling mechanisms, and the behavioural processes they regulate. Nevertheless, manipulation of several different 5-HT receptor subtypes (5-HT1A, 5-HT1c, 5-HT2 and 5-HT3) may produce anxiolytic effects; 5-HT1A and 5-HT2 receptors may be involved in the aetiology of major depression and the therapeutic effects of antidepressant treatment; and 5-HT3 receptors have been linked to reward mechanisms and cognitive processes. These advances offer therapeutic possibilities, the value of which can only be satisfactorily assessed by controlled clinical trials.

Type
Research Article
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arora, R. C. & Meltzer, H. Y. (1989) Serotonergic measures in the brains of suicide victims: 5-HT2 binding sites in frontal cortex of suicide victims and control subjects. American Journal of Psychiatry, 146, 730736.Google Scholar
Audet, M. A., Descarries, L. & Doucet, G. (1989) Quantified regional and laminar distribution of the serotonin innervation in the anterior half of adult rat cerebral cortex. Journal of Chemical Neuroanatomy, 2, 2944.Google Scholar
Barnes, J. M., Barnes, N. M., Costall, B., et al (1989) 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature, 338, 762763.CrossRefGoogle ScholarPubMed
Barnes, J. M., Costall, B., Coughlan, J., et al (1990) The effects of ondansetron, a 5-HT3 receptor antagonist, on cognition in rodents and primates. Pharmacology, Biochemistry and Behaviour, 35, 955962.CrossRefGoogle Scholar
Bersani, G., Bressa, G. M., Meco, G., et al (1990) Combined serotonin-5-HT2 and dopamine-D2 antagonism in schizophrenia: clinical extrapyramidal and neuroendocrine responses in a preliminary study with risperidone. Human Psychopharmacology, 5, 225231.Google Scholar
Bersani, G., Marini, S., Grispini, A., et al (1991) 5-HT2 receptor antagonism in dysthymic disorder: a double-blind placebo-controlled study with ritanserin. Acta Psychiatrica Scandinavica (in press).Google Scholar
Blier, P., De Montigny, C. & Chaput, Y. (1987) Modifications of the serotonin system by antidepressant treatments: implications for the therapeutic response in major depression. Journal of Clinical Psychopharmacology, 7, 24S35S.CrossRefGoogle ScholarPubMed
Blier, P., & De Montigny, C. (1990) Differential effect of gepirone on presynaptic and postsynaptic serotonin receptors; single cell recording studies. Journal of Clinical Psychopharmacology, 10, 13S20S.CrossRefGoogle ScholarPubMed
Blier, P., Serano, A. & Scatton, B. (1990) Differential responsiveness of the rat dorsal and median raphe 5-HT systems to 5-HT1 receptor agonists and p-chloroamphetamine. Synapse, 5, 120133.Google Scholar
Blundell, J. E. (1984) Serotonin and appetite. Neuropharmacology, 23, 15371551.Google Scholar
Bobker, D. H. & Williams, J. T. (1990) Ion conductances affected by 5-HT receptor subtypes in mammalian neurones. Trends in Neurological Sciences, 13, 169173.Google Scholar
Bradley, P. B., Engel, G., Feniuk, W., et al (1986) Proposal for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology, 25, 563576.Google Scholar
Carboni, E., Acquas, E., Leone, P., et al (1989) 5-HT3 receptor antagonists block morphine- and nicotine- but not amphetamine-induced reward. Psychopharmacology, 97, 175178.Google Scholar
Cheetham, S. C., Crompton, M. R., Katona, C. L. E., et al (1988) Brain 5-HT2 receptor binding in suicide victims. Brain Research, 443, 272280.CrossRefGoogle ScholarPubMed
Clarke, D. E., Craig, D. A. & Fozard, J. R. (1990) The 5-HT4 receptor; naughty, but nice. Trends in Pharmacological Sciences, 10, 385386.CrossRefGoogle Scholar
Costall, B., Domeney, A. M., Naylor, R. J., et al (1987) Effect of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. British Journal of Pharmacology, 92, 881884.CrossRefGoogle ScholarPubMed
Costall, B., Domeney, A. M., Jones, B. J., et al (1988) Influence of GR38032F on the behavioural consequences of ceasing sub-chronic treatment with drugs of abuse. British Journal of Pharmacology, 95, 905P.Google Scholar
Cowen, P. J. & Charig, E. M. (1987) Neuroendocrine responses to tryptophan in major depression. Archives of General Psychiatry, 44, 958966.Google Scholar
Critchley, M. A. E. & Handley, S. L. (1986) 5-HT2 receptor antagonists show anxiolytic activity in the X-maze anxiety test. British Journal of Pharmacology, 89, 646P.Google Scholar
Curzon, G. & Kennett, G. A. (1990) m-CPP: a tool for studying behavioural responses associated with 5-HTlC receptors. Trends in Pharmacological Sciences, 11, 181182.CrossRefGoogle Scholar
Danish University Antidepressant Group (1986) Citalopram: clinical effect profile in comparison with clomipramine. A controlled multicentre study. Psychopharmacology, 90, 131138.Google Scholar
Deakin, J. F. W. & Crow, T. J. (1986) Monoamines, rewards and punishments – the anatomy and physiology of the affective disorders. In The Biology of Depression (ed. Deakin, J. F. W.), pp. 125. London: Royal College of Psychiatrists/Gaskell Press.Google Scholar
Deakin, J. F. W., Pennell, I., Upadhyaya, A. J., et al (1990) A neuroendocrine study of 5-HT function in depression: evidence for biological mechanisms of endogenous and psychosocial causation. Psychopharmacology, 101, 8592.Google Scholar
Den Boer, J. A. & Westenberg, H. G. M. (1990) Serotonin function in panic disorder: a double blind placebo controlled study with fluvoxamine and ritanserin. Psychopharmacology, 102, 8594.CrossRefGoogle ScholarPubMed
Doenicke, A., Brand, J. & Perrin, V. L. (1988) Possible benefit of GR 43175, a novel 5-HT, receptor agonist, for the acute treatment of severe migraine. Lancet, ii, 13091311.Google Scholar
Dugovic, C. & Wauquier, A. (1987) 5-HT2 receptors could be primarily involved in the regulation of slow wave sleep in the rat. European Journal of Pharmacology, 137, 145146.Google Scholar
Eison, A. S., Eison, M. S., Stanley, M., et al (1986) Serotonergic mechanisms in the behavioural effects of buspirone and gepirone. Pharmacology, Biochemistry and Behaviour, 24, 701707.Google Scholar
Eison, M. (1990) Serotonin: a common neurobiological substrate in anxiety and depression. Journal of Clinical Psychopharmacology, 10, 26S30S.Google Scholar
Engel, G., Gothert, M., Muller-Schweinitzer, E., et al (1986) Identity of the inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain correlate with 5-HT1B binding sites. Naunyn-Schmiedeberg's Archives of Pharmacology, 332, 17.Google Scholar
Feniuk, W., Humphrey, P. P. A. & Perren, M. J. (1987) Selective vasoconstrictor action of GR 43175 on arterio-venous anastomoses (AVAs) in the anaesthetised cat. British Journal of Pharmacology, 92, 756P.Google Scholar
Fleaght, A. J., Cervenka, A. & Peroutka, S. J. (1990) In vivo effects of sumatriptan (GR 43175) on extracellular levels of 5-HT in guinea pig brain. Neuropharmacology, 29, 511513.Google Scholar
Fozard, J. R. (1987) 5-HT: the enigma variations. Trends in Pharmacological Sciences, 8, 501506.CrossRefGoogle Scholar
Gartside, S. E., Cowen, P. J. & Hjorth, S. (1990) Effects of MDL 73005EF on central pre- and postsynaptic 5-HT1A receptor function in the rat in vivo. European Journal of Pharmacology, 191, 391400.CrossRefGoogle ScholarPubMed
Goodwin, G. M., Green, A. R. & Johnson, P. (1984) 5-HT receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behaviour following antidepressant treatment to mice. British Journal of Pharmacology, 83, 235242.Google Scholar
Hartig, P. R. (1989) Molecular biology of 5-HT receptors. Trends in Pharmacological Sciences, 10, 6469.CrossRefGoogle Scholar
Heninger, G. R., Charney, D. S. & Sternberg, D. E. (1984) Serotonergic function in depression. Archives of General Psychiatry, 41, 398402.Google Scholar
Hoyer, D. (1988a) Functional correlates of serotonin 5-HT, recognition sites. Journal of Receptor Research, 8, 5981.Google Scholar
Hoyer, D. (1988b) Molecular pharmacology and biology of 5-HT1C receptors. Trends in Pharmacological Sciences, 9, 8994.CrossRefGoogle Scholar
Hutson, P. H., Donohoe, T. P. & Curzon, G. (1988) Infusion of the 5-hydroxytryptamine agonists, RU 24969 and TFMPP into the paraventricular nucleus of the hypothalamus causes hypophagia. Psychopharmacology, 95, 550552.CrossRefGoogle ScholarPubMed
Jones, B. J., Costall, B., Domeney, A. M., et al (1988) The potential anxiolytic activity of GR 38032F, a 5-HT3 receptor antagonist. British Journal of Pharmacology, 93, 985993.Google Scholar
Kennett, G. A., Marcou, M., Dourish, C. T., et al (1987) Single administration of 5-HT1A agonists decreases 5-HT1A presynaptic but not post-synaptic receptor-mediated responses: relationship to antidepressant-like action. European Journal of Pharmacology, 138, 5360.Google Scholar
Kennett, G. A., Whitton, P., Shah, K., et al (1989) Anxiogenic effects of mCPP and TFMPP in animal models are opposed by 5-HTIC receptor antagonists. European Journal of Pharmacology, 164, 445454.CrossRefGoogle Scholar
Kilpatrick, G. J., Jones, B. J. & Tyers, M. B. (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature, 330, 746747.Google Scholar
Knapp, J. E. (1985) Clinical profile on buspirone. British Journal of Clinical Practice, 39, 95105.Google Scholar
Lecrubier, Y., Puech, A. J. & Azcona, A. (1990) 5-HT3 receptors in anxiety disorders. Summer Meeting, abstract 19. Cambridge: British Association for Psychopharmacology.Google Scholar
Marty, M. (1989) Ondansetron in the prophylaxis of acute cisplatin-induced nausea and vomiting. European Journal of Cancer and Clinical Oncology, 25, S41S45.Google Scholar
McKenna, D. J. & Peroutka, S. J. (1989) Differentiation of 5-hydroxytryptamine2 receptor subtypes using 125I-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin. Journal of Neuroscience, 9, 34823490.Google Scholar
Meltzer, H. Y. (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology, 99, S18S27.Google Scholar
Molliver, M. (1987) Serotonergic neuronal systems: what their anatomic organisation tells us about their function. Journal of Clinical Psychopharmacology, 7, 3S23S.Google Scholar
Pangalila-Ratu, E. A., Grispinin, A., Marini, S., et al (1988) Ritanserin in the treatment of generalised anxiety disorders: a placebo-controlled trial. Human Psychopharmacology, 3, 207212.Google Scholar
Pazos, A., Hoyer, D., Dietl, M. M., et al (1988) Autoradiography of serotonin receptors. In Neuronal Serotonin (eds Osborne, N.N. & Hamon, M.), pp. 507543. Chichester: Wiley.Google Scholar
Peroutka, S. J. (1988) 5-hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends in Neurosciences, 11, 496500.Google Scholar
Peroutka, S. J., Lebovitz, R. M. & Snyder, S. J. (1979) Two distinct serotonin receptors with different physiological functions. Science, 212, 827829.Google Scholar
Pierce, P. A. & Peroutka, S. J. (1989) Hallucinogenic drug interaction with neurotransmitter receptor binding sites in human cortex. Psychopharmacology, 97, 118122.CrossRefGoogle ScholarPubMed
Pratt, G. D., Bowery, N. G., Kilpatrick, G. J., et al (1990) Consensus meeting agrees distribution of 5-HT3 receptors in mammalian hindbrain. Trends in Pharmacological Sciences, 11, 135136.Google Scholar
Reyntjens, A., Gelders, Y. G., Hoppenbrouwers, M-L., et al (1986) Thymosthenic effects of rianserin (R 55 667), a centrally acting serotonin-S2 receptor blocker. Drug Development Research, 8, 205211.Google Scholar
Richardson, B. P., Engel, G., Donatsch, P., et al (1985) Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature, 316, 126131.Google Scholar
Robinson, D. S., Rickels, K., Feighner, J., et al (1990) Clinical effects of the 5-HT1A partial agonists in depression: a composite analysis of buspirone in the treatment of depression. Journal of Clinical Psychopharmacology, 10, 67S76S.Google Scholar
Schlicker, E., Fink, K., Gothert, M., et al (1989) The pharmacological properties of the presynaptic autoreceptor in the pig brain cortex conform to the 5-HT1D receptor subtype. Naunyn-Schmiedeberg's Archives of Pharmacology, 340, 4551.Google Scholar
Schoeffter, P. & Hoyer, D. (1989) How selective is GR 43175? Interactions with functional 5-HT1A, 5-HT1B, 5-HTlC and 5-HT1D receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 340, 135138.CrossRefGoogle Scholar
Schofield, P. R., Shivers, B. D. & Seeberg, P. H. (1990) The role of receptor subtype diversity in the CNS. Trends in Neurosciences, 13, 811.Google Scholar
Sharp, T., Bramwell, S. R. & Grahame-Smith, D. G. (1989) 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. British Journal of Pharmacology, 96, 283290.Google Scholar
Smith, C. E., Ware, C. J. & Cowen, P. J. (1990) Pindolol decreases prolactin and growth hormone responses to intravenous L-tryptophan. Psychopharmacology, 103, 140142.Google Scholar
Traber, J. & Glaser, T. (1987) 5-HT1A receptor anxiolytics. Trends in Pharmacological Sciences, 8, 432437.Google Scholar
Tyers, M. B., Bunce, K. T. & Humphrey, P. P. A. (1989) Pharmacological and anti-emetic properties of ondansetron. European Journal of Cancer and Clinical Oncology, 25, S15S19.Google Scholar
Upadhyaya, A. K., Pennell, I., Cowen, P. J., et al (1990) Blunted growth hormone and prolactin responses to L-tryptophan in depression: a state dependent abnormality. Journal of Affective Disorders, 21, 213218.Google Scholar
Vander Maelen, C. P., Matheson, G. K., Wilderman, R. C., et al (1986) Inhibition of serotoninergic dorsal raphe neurones by systemic and iontophoretic administration of buspirone, a nonbenzodiazepine anxiolytic drug. European Journal of Pharmacology, 129, 123130.Google Scholar
Wander, T. J., Nelson, A., Okazaki, H., et al (1986) Antagonism by antidepressants of serotonin S1 and serotonin S2 receptors of normal human brain in vitro. European Journal of Pharmacology, 132, 114121.Google Scholar
Wander, T. J., Nelson, A., Okazaki, H., et al (1987) Antagonism by neuroleptics of serotonin 5-HT1A and 5-HT2 receptors of normal human brain in vitro. European Journal of Pharmacology, 143, 279282.Google Scholar
Wise, R. A. & Bozarth, M. A. (1984) Brain reward circuitry: four circuit elements “wired” in apparent series. Brain Research Bulletin, 12, 202208.Google Scholar
Yates, M., Leake, A., Candy, J. M., et al (1990) 5-HT2 receptor changes in major depression. Biological Psychiatry, 27, 489496.Google Scholar
Yocca, F. (1990) Neurochemistry and neurophysiology of buspirone and gepirone: interactions at presynaptic and postsynaptic 5-HT1A receptors. Journal of Clinical Psychopharmacology, 10, 6S12S.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.