Skip to main content
×
×
Home

Treatment-resistant depression and peripheral C-reactive protein

  • Samuel R. Chamberlain (a1), Jonathan Cavanagh (a2), Peter de Boer (a3), Valeria Mondelli (a4), Declan N.C. Jones (a5), Wayne C. Drevets (a6), Philip J. Cowen (a7), Neil A. Harrison (a8), Linda Pointon (a9), Carmine M. Pariante (a10) and Edward T. Bullmore (a11)...
Abstract
Background

C-reactive protein (CRP) is a candidate biomarker for major depressive disorder (MDD), but it is unclear how peripheral CRP levels relate to the heterogeneous clinical phenotypes of the disorder.

Aim

To explore CRP in MDD and its phenotypic associations.

Method

We recruited 102 treatment-resistant patients with MDD currently experiencing depression, 48 treatment-responsive patients with MDD not currently experiencing depression, 48 patients with depression who were not receiving medication and 54 healthy volunteers. High-sensitivity CRP in peripheral venous blood, body mass index (BMI) and questionnaire assessments of depression, anxiety and childhood trauma were measured. Group differences in CRP were estimated, and partial least squares (PLS) analysis explored the relationships between CRP and specific clinical phenotypes.

Results

Compared with healthy volunteers, BMI-corrected CRP was significantly elevated in the treatment-resistant group (P = 0.007; Cohen's d = 0.47); but not significantly so in the treatment-responsive (d = 0.29) and untreated (d = 0.18) groups. PLS yielded an optimal two-factor solution that accounted for 34.7% of variation in clinical measures and for 36.0% of variation in CRP. Clinical phenotypes most strongly associated with CRP and heavily weighted on the first PLS component were vegetative depressive symptoms, BMI, state anxiety and feeling unloved as a child or wishing for a different childhood.

Conclusions

CRP was elevated in patients with MDD, and more so in treatment-resistant patients. Other phenotypes associated with elevated CRP included childhood adversity and specific depressive and anxious symptoms. We suggest that patients with MDD stratified for proinflammatory biomarkers, like CRP, have a distinctive clinical profile that might be responsive to second-line treatment with anti-inflammatory drugs.

Declaration of interest

S.R.C. consults for Cambridge Cognition and Shire; and his input in this project was funded by a Wellcome Trust Clinical Fellowship (110049/Z/15/Z). E.T.B. is employed half time by the University of Cambridge and half time by GlaxoSmithKline; he holds stock in GlaxoSmithKline. In the past 3 years, P.J.C. has served on an advisory board for Lundbeck. N.A.H. consults for GlaxoSmithKline. P.d.B., D.N.C.J. and W.C.D. are employees of Janssen Research & Development, LLC., of Johnson & Johnson, and hold stock in Johnson & Johnson. The other authors report no financial disclosures or potential conflicts of interest.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Treatment-resistant depression and peripheral C-reactive protein
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Treatment-resistant depression and peripheral C-reactive protein
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Treatment-resistant depression and peripheral C-reactive protein
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Samuel Chamberlain, MB/BChir, PhD, MRCPsych, Department of Psychiatry, Box 189 Level E4, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK. Email: src33@cam.ac.uk
Footnotes
Hide All
*

Joint senior authors.

A full author list, including all affiliations, is available as supplementary material at https://doi.org/10.1192/bjp.2018.66.

Footnotes
References
Hide All
1Bhattacharya, A, Derecki, NC, Lovenberg, TW, Drevets, WC. Role of neuro-immunological factors in the pathophysiology of mood disorders. Psychopharmacology (Berl) 2016; 233(9): 1623–36.
2Dantzer, R, O'Connor, JC, Freund, GG, Johnson, RW, Kelley, KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9(1): 4656.
3Strawbridge, R, Arnone, D, Danese, A, Papadopoulos, A, Herane Vives, A, Cleare, AJ. Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol 2015; 25(10): 1532–43.
4Maes, M, Meltzer, HY, Bosmans, E, Bergmans, R, Vandoolaeghe, E, Ranjan, R, et al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 1995; 34(4): 301–9.
5Raison, CL, Capuron, L, Miller, AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006; 27(1): 2431.
6Frasure-Smith, N, Lesperance, F, Irwin, MR, Sauve, C, Lesperance, J, Theroux, P. Depression, C-reactive protein and two-year major adverse cardiac events in men after acute coronary syndromes. Biol Psychiatry 2007; 62(4): 302–8.
7Kinney, DK, Tanaka, M. An evolutionary hypothesis of depression and its symptoms, adaptive value, and risk factors. J Nerv Ment Dis 2009; 197(8): 561–7.
8Haapakoski, R, Mathieu, J, Ebmeier, KP, Alenius, H, Kivimaki, M. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 2015; 49: 206–15.
9Young, JJ, Silber, T, Bruno, D, Galatzer-Levy, IR, Pomara, N, Marmar, CR. Is there progress? An overview of selecting biomarker candidates for major depressive disorder. Front Psychiatry 2016; 7: 72.
10Domenici, E, Wille, DR, Tozzi, F, Prokopenko, I, Miller, S, McKeown, A, et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One 2010; 5(2): e9166.
11Glaser, R, Robles, TF, Sheridan, J, Malarkey, WB, Kiecolt-Glaser, JK. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch Gen Psychiatry 2003; 60(10): 1009–14.
12Cattaneo, A, Gennarelli, M, Uher, R, Breen, G, Farmer, A, Aitchison, KJ, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology 2013; 38(3): 377–85.
13Cattaneo, A, Ferrari, C, Uher, R, Bocchio-Chiavetto, L, Riva, MA, Consortium, MRCI, et al. Absolute measurements of macrophage migration inhibitory factor and interleukin-1-beta mRNA levels accurately predict treatment response in depressed patients. Int J Neuropsychopharmacol 2016; 19(10): pyw045.
14Janssen, DG, Caniato, RN, Verster, JC, Baune, BT. A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol 2010; 25(3): 201–15.
15Leday, GGR, Vertes, PE, Richardson, S, Greene, JR, Regan, T, Khan, S, et al. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol Psychiatry 2018; 83(1):7980.
16Hickman, RJ, Khambaty, T, Stewart, JC. C-reactive protein is elevated in atypical but not nonatypical depression: data from the National Health and Nutrition Examination survey (NHANES) 1999-2004. J Behav Med 2014; 37(4): 621–9.
17Miller, GE, Cole, SW. Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biol Psychiatry 2012; 72(1): 3440.
18Copeland, WE, Shanahan, L, Worthman, C, Angold, A, Costello, EJ. Cumulative depression episodes predict later C-reactive protein levels: a prospective analysis. Biol Psychiatry 2012; 71(1): 1521.
19Liukkonen, T, Rasanen, P, Jokelainen, J, Leinonen, M, Jarvelin, MR, Meyer-Rochow, VB, et al. The association between anxiety and C-reactive protein (CRP) levels: results from the Northern Finland 1966 birth cohort study. Eur Psychiatry 2011; 26(6): 363–9.
20Abdi, H, Williams, LJ. Partial least squares methods: partial least squares correlation and partial least square regression. Methods Mol Biol 2013; 930: 549–79.
21Wold, H. Estimation of Principal Components and Related Models by Iterative Least Squares. Academic Press, 1966.
22Wold, S. Personal memories of the early PLS development. Chemometrcs Intell Lab Syst 2001; 58: 83–4.
23Menzies, L, Achard, S, Chamberlain, SR, Fineberg, N, Chen, CH, del Campo, N, et al. Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain 2007; 130(Pt 12): 3223–36.
24American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed). American Psychiatric Publishing, 2013.
25Spitzer, MB, Miriam, G, Williams, JB. Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID). American Psychiatric Press, Inc., 1996.
26Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 5662.
27Desseilles, M, Witte, J, Chang, TE, Iovieno, N, Dording, CM, Ashih, H, et al. Assessing the adequacy of past antidepressant trials: a clinician's guide to the antidepressant treatment response questionnaire. J Clin Psychiatry 2011; 72(8): 1152–4.
28Marcus, RN, McQuade, RD, Carson, WH, Hennicken, D, Fava, M, Simon, JS, et al. The efficacy and safety of aripiprazole as adjunctive therapy in major depressive disorder: a second multicenter, randomized, double-blind, placebo-controlled study. J Clin Psychopharmacol 2008; 28(2): 156–65.
29Katona, CL, Robertson, MM, Abou-Saleh, MT, Nairac, BL, Edwards, DR, Lock, T, et al. Placebo-controlled trial of lithium augmentation of fluoxetine and lofepramine. Int Clin Psychopharmacol 1993; 8(4): 323.
30Beck, AT, Steer, RA, Brown, GK. Manual for Beck Depression Inventory - II. Psychological Corporation, 1996.
31Spielberger, CD, Gorsuch, RL, Lushene, R, Vagg, PR, Jacobs, GA. Manual for the State-Trait Anxiety Inventory. Consulting Psychologists Press, 1983.
32Chalder, T, Berelowitz, G, Pawlikowska, T, Watts, L, Wessely, S, Wright, D, et al. Development of a fatigue scale. J Psychosom Res 1993; 37(2): 147–53.
33Snaith, RP, Hamilton, M, Morley, S, Humayan, A, Hargreaves, D, Trigwell, P. A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. Br J Psychiatry 1995; 167(1): 99103.
34Bernstein, DP, Fink, L, Handelsman, L, Foote, J, Lovejoy, M, Wenzel, K, et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am J Psychiatry 1994; 151(8): 1132–6.
35Bassuk, SS, Rifai, N, Ridker, PM. High-sensitivity C-reactive protein: clinical importance. Curr Probl Cardiol 2004; 29(8): 439–93.
36Raison, CL, Rutherford, RE, Woolwine, BJ, Shuo, C, Schettler, P, Drake, DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 2013; 70(1): 3141.
37JMP Pro ® Version 13.0, Cary, North Carolina, USA. SAS Institute Inc., 2017.
38Garthwaite, PH. An interpretation of partial least squares. J Am Stat Assoc 1994; 89(425): 122–7.
39Höskuldsson, A. PLS regression methods. J Chemometrics 1988; 2(3): 211–28.
40Cox, I, Gaudard, M. Discovering Partial Least Squares with JMP. SAS Institute Inc., 2013.
41Terpening, WD. Statistical Analysis for Business Using JMP: A Student's Guide. SAS Institute Inc., 2011.
42Ridker, PM, Buring, JE, Cook, NR, Rifai, N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 2003; 107(3): 391–7.
43Zhao, Y, Lv, G. Correlation of C-reactive protein level and obesity in Chinese adults and children: a meta-analysis. J Endocrinol Invest 2013; 36(8): 642–7.
44Janka, Z. Serotonin dysfunctions in the background of the seven deadly sins. Ideggyogy Sz 2003; 56(11–12): 376–85.
45Al-Harbi, KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence 2012; 6: 369–88.
46Schosser, A, Serretti, A, Souery, D, Mendlewicz, J, Zohar, J, Montgomery, S, et al. European Group for the Study of Resistant Depression (GSRD) – where have we gone so far: review of clinical and genetic findings. Eur Neuropsychopharmacol 2012; 22(7): 453–68.
47Lepine, JP, Briley, M. The increasing burden of depression. Neuropsychiatr Dis Treat 2011; 7(suppl 1): 37.
48Bhattacharya, A, Drevets, WC. Role of neuro-immunological factors in the pathophysiology of mood disorders: implications for novel therapeutics for treatment resistant depression. Curr Top Behav Neurosci 2017; 31: 339–56.
49Carvalho, LA, Torre, JP, Papadopoulos, AS, Poon, L, Juruena, MF, Markopoulou, K, et al. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J Affect Disord 2013; 148(1): 136–40.
50Jha, MK, Minhajuddin, A, Gadad, BS, Greer, T, Grannemann, B, Soyombo, A, et al. Can C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trial. Psychoneuroendocrinology 2017; 78: 105–13.
51Uher, R, Tansey, KE, Dew, T, Maier, W, Mors, O, Hauser, J, et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am J Psychiatry 2014; 171(12): 1278–86.
52Walker, AJ, Foley, BM, Sutor, SL, McGillivray, JA, Frye, MA, Tye, SJ. Peripheral proinflammatory markers associated with ketamine response in a preclinical model of antidepressant-resistance. Behav Brain Res 2015; 293: 198202.
53Wichers, MC, Koek, GH, Robaeys, G, Verkerk, R, Scharpe, S, Maes, M. IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 2005; 10(6): 538–44.
54Mechawar, N, Savitz, J. Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry 2016; 6(11): e946.
55Postal, M, Appenzeller, S. The importance of cytokines and autoantibodies in depression. Autoimmun Rev 2015; 14(1): 30–5.
56Haroon, E, Raison, CL, Miller, AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2012; 37(1): 137–62.
57Berg, AH, Scherer, PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005; 96(9): 939–49.
58Capuron, L, Su, S, Miller, AH, Bremner, JD, Goldberg, J, Vogt, GJ, et al. Depressive symptoms and metabolic syndrome: is inflammation the underlying link? Biol Psychiatry 2008; 64(10): 896900.
59Mohamed-Ali, V, Goodrick, S, Rawesh, A, Katz, DR, Miles, JM, Yudkin, JS, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997; 82(12): 4196–200.
60Duivis, HE, Vogelzangs, N, Kupper, N, de Jonge, P, Penninx, BW. Differential association of somatic and cognitive symptoms of depression and anxiety with inflammation: findings from the Netherlands Study of Depression and Anxiety (NESDA). Psychoneuroendocrinology 2013; 38(9): 1573–85.
61Capuron, L, Gumnick, JF, Musselman, DL, Lawson, DH, Reemsnyder, A, Nemeroff, CB, et al. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 2002; 26(5): 643–52.
62Reichenberg, A, Yirmiya, R, Schuld, A, Kraus, T, Haack, M, Morag, A, et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 2001; 58(5): 445–52.
63Sachs-Ericsson, N, Kendall-Tackett, K, Hernandez, A. Childhood abuse, chronic pain, and depression in the National Comorbidity Survey. Child Abuse Negl 2007; 31(5): 531–47.
64Baumeister, D, Akhtar, R, Ciufolini, S, Pariante, CM, Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol Psychiatry 2016; 21(5): 642–9.
65Lu, S, Peng, H, Wang, L, Vasish, S, Zhang, Y, Gao, W, et al. Elevated specific peripheral cytokines found in major depressive disorder patients with childhood trauma exposure: a cytokine antibody array analysis. Compr Psychiatry 2013; 54(7): 953–61.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
UNKNOWN
Supplementary materials

Chamberlain et al. supplementary material
Chamberlain et al. supplementary material 1

 Unknown (115 KB)
115 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 142
Total number of PDF views: 766 *
Loading metrics...

Abstract views

Total abstract views: 1264 *
Loading metrics...

* Views captured on Cambridge Core between 16th May 2018 - 17th August 2018. This data will be updated every 24 hours.

Treatment-resistant depression and peripheral C-reactive protein

  • Samuel R. Chamberlain (a1), Jonathan Cavanagh (a2), Peter de Boer (a3), Valeria Mondelli (a4), Declan N.C. Jones (a5), Wayne C. Drevets (a6), Philip J. Cowen (a7), Neil A. Harrison (a8), Linda Pointon (a9), Carmine M. Pariante (a10) and Edward T. Bullmore (a11)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *