Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T16:04:46.068Z Has data issue: false hasContentIssue false

Biophysical approach for studying the MinD protein dynamics and energy landscape: a novel use of the spot tracking technique

Published online by Cambridge University Press:  21 July 2011

P. Kanthang
Affiliation:
Rajamangala University of Technology Phra Nakhon, Bangkok 10800, Thailand School of Science, University of Phayao, Phayao 56000, Thailand
W. Ngamsaad
Affiliation:
School of Science, University of Phayao, Phayao 56000, Thailand
N. Nuttavut
Affiliation:
R&D Group of Biological and Environmental Physics, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
W. Triampo*
Affiliation:
R&D Group of Biological and Environmental Physics, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Institute for Innovative Learning, Mahidol University, 999, Phuttamonthon 4 Road, Salaya, Nakorn Pathom 73170, Thailand ThEP Center, CHE, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
D. Triampo
Affiliation:
Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
C. Krittanai
Affiliation:
Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom Thailand
*
Get access

Abstract

The dynamics of MinD proteins have been acknowledged as playing a central role in accurate cell division. In our study, a spot tracking technique (STT) was applied to track motion and quantitatively characterize the dynamic behavior of MinD proteins on the level of particle cluster in Escherichia coli. We focused on the time and spatial distribution of MinD proteins. With the STT technique, the main quantitative results are twofold: (i) dynamic local and global pattern formations and (ii) energy landscape. The overall MinD cluster motion is governed by two dynamical time scales, namely the (slow) trapping time (~26 s) that appears at the cell poles, and the (fast) switching time (~1–2 s) which emerges between the cell poles. MinD cluster motion at the polar zones performs subdiffusion. The energy landscape is found to be two wells and one barrier. These energy landscape results are to relate with the memory effect of GFP-MinD cluster motion, measuring the PSD exponent approximately 1.57 (α ~ 0.57) corresponding to the estimated potential depth U0 ~ 1.75kBT.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lutkenhaus, J., Addinall, S.G., Annu. Rev. Biochem. 66, 93 (1997)CrossRef
Rothfield, L.I., Justice, S., Garcia-Lara, J., Annu. Rev. Genet. 33, 423 (1999)CrossRef
Woldringh, C.L., Mulder, E., Huls, P.G., Vischer, N., Res. Microbiol. 142, 309 (1991)CrossRef
Yu, X.C., Margolin, W., Mol. Microbiol. 32, 315 (1999)CrossRef
de Boer, P.A.J., Crossley, R.E., Rothfield, L.I., Cell 56, 641 (1989)CrossRef
Rothfield, L.I., Shih, Y.-L., King, G., Cell 106, 13 (2001)CrossRef
Rothfield, L.I., Taghbalout, A., Shih, Y.-L., Nat. Rev. Microbiol. 31, 959 (2005)CrossRef
Shih, Y.-L., Rothfield, L.I., Microbiol. Mol. Biol. Rev. 70, 729 (2006)CrossRef
Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K., Schwille, P., Science 320, 789 (2008)CrossRef
Ivanov, V., Mizuuchi, K., Proc. Natl. Acad. Sci. USA 107, 8071 (2010)CrossRef
Unai, S., Kanthang, P., Junthon, U., Ngamsaad, W., Triampo, W., Modchang, C., Krittanai, C., Biologia 64, 27 (2009)CrossRef
Saxton, M.J., Jacobson, K., Annu. Rev. Biophys. Biomol. Struct. 26, 373 (1997)CrossRef
Qian, H., Scheetz, M., Elson, E.L., Biophys. J. 60, 910 (1991)CrossRef
Rowland, S.L., Fu, X., Sayed, M.A., Zhang, Y., Cook, W.R., Rothfield, L., J. Bacteriol. 182, 613 (2000)CrossRef
Hu, Z., Lutkenhaus, J., Mol. Cell 7, 1337 (2001)CrossRef
Suefuji, K., Valluzzi, R., RayChaudhuri, D., Proc. Natl. Acad. Sci. USA 99, 16776 (2002)CrossRef
Shih, Y.-L., Le, T., Rothfield, L., Proc. Natl. Acad. Sci. USA 100, 7865 (2003)CrossRef
Sage, D., Neumann, F.R., Hediger, F., Gasser, S.M., Unser, M., IEEE Trans. Image Process. 14, 1372 (2005)CrossRef
Suzuki, K., Ritchie, K., Kajikawa, E., Fujiwara, T., Kusumi, A., Biophys. J. 88, 3659 (2005)CrossRef
Jin, S., Haggie, P.M., Verkman, A.S., Biophys. J. 93, 1079 (2007)CrossRef
Metzler, R., Klafter, J., Phys. Rep. 339, 1 (2000)CrossRef
Tolic-Nørrelykke, I.M., Munteanu, E.-L., Thon, G., Phys. Rev. Lett. 93, 078102 (2004)CrossRef
Golding, I., Cox, E.C., Phys. Rev. Lett. 96, 098102 (2006)CrossRef
Mantegna, R.N., Stanley, H.E., An Introduction to Econophysics Correlations and Complexity in Finance, (Cambridge University Press, Cambridge, UK, 2000)Google Scholar
Welch, P.D., IEEE Trans. Audio Electroacoust. AU-15, 70 (1967)CrossRef
Kneller, G.R., Hinsen, K., J. Chem. Phys. 121, 10278 (2004)CrossRef
Ritchie, K., Shan, X.-Y., Kondo, J., Iwasawa, K., Fujiwara, T., Kusumi, A., Biophys. J. 88, 2266 (2005)CrossRef
Daumas, F., Destainville, N., Millot, C., Lopez, A., Dean, D., Salome, L., Biophys. J. 84, 356 (2003)CrossRef
Wong, I.Y., Gardel, M.L., Reichman, D.R., Weeks, E.R., Valentine, M.T., Bausch, A.R., Weitz, D.A., Phys. Rev. Lett. 92, 178101 (2004)CrossRef
de Boer, P.A.J., Crossley, R.E., Rothfield, L.I., EMBO J. 10, 4371 (1991)
Szeto, T.H., Rowland, S.L., Rothfield, L.I., King, G.F., Proc. Natl. Acad. Sci. USA 99, 15693 (2002)CrossRef
Hu, Z., Gogol, E.P., Lutkenhaus, J., Proc. Natl. Acad. Sci. USA 99, 6761 (2002)CrossRef
Hu, Z., Lutkenhaus, J., Mol. Microbiol. 47, 345 (2003)CrossRef
Mileykovskaya, E., Fishov, I., Fu, X., Corbin, B., Margolin, W., Dowhan, W., J. Biol. Chem. 278, 22193 (2003)CrossRef
Taghbalout, A., Ma, L., Rothfield, L., J. Bacteriol. 188, 2993 (2006)CrossRef
Niu, L., Yu, J., Biophys. J. 95, 2009 (2008)CrossRef
Junthorn, U., Unai, S., Kanthang, P., Ngamsaad, W., Modchang, C., Triampo, W., Krittanai, C., Triampo, D., J. Korean Phys. Soc. 52, 639 (2008)CrossRef
Howard, M., Rutenberg, A.D., de Vet, S., Phys. Rev. Lett. 87, 278102 (2001)CrossRef
Huang, K.C., Meir, Y., Wingreen, N.S., Proc. Natl. Acad. Sci. USA 100, 12724 (2003)CrossRef
Kulkarni, R.V., Huang, K.C., Kloster, M., Wingreen, N.S., Phys. Rev. Lett. 93, 228103 (2004)CrossRef
Hu, Z., Lutkenhaus, J., Mol. Microbiol. 34, 82 (1999)CrossRef
Raskin, D.M., de Boer, P.A.J., J. Bacteriol. 181, 6419 (1999)
Hale, C.A., Meinhardt, H., de Boer, P.A.J., EMBO J. 20, 1563 (2001)CrossRef
Raskin, D.M., de Boer, P.A.J., Cell 91, 685 (1997)CrossRefPubMed
Saxton, M.J., Biophys. J. 70, 1250 (1996)CrossRef
Haken, H., Synergetics, An Introduction. Nonequilibrium Phase-Transitions and Self-Organization in Physics, Chemistry and Biology (Springer-Verlag, Berlin, Heidelberg, 1977) Google Scholar
Meacci, G., Ries, J., Fischer-Friedrich, E., Kahya, N., Schwille, P., Kruse, K., Phys. Biol. 3, 255 (2006)CrossRef