Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-30T03:06:32.860Z Has data issue: false hasContentIssue false

Dynamical processes of low-energy carbon ion collision with the graphene supported by diamond

Published online by Cambridge University Press:  13 August 2014

Jinxia Dai
Affiliation:
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education,College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China Beijing Radiation Center, Beijing 100875, P.R. China
Chao Zhang
Affiliation:
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, P.R. China
Fei Mao
Affiliation:
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education,College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China Beijing Radiation Center, Beijing 100875, P.R. China
Wei Cheng
Affiliation:
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education,College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China Beijing Radiation Center, Beijing 100875, P.R. China
Feng-Shou Zhang*
Affiliation:
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education,College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P.R. China Beijing Radiation Center, Beijing 100875, P.R. China Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, P.R. China
*
Get access

Abstract

The dynamical processes of a low-energy carbon ion collision with the graphene sheet supported by diamond at three impact positions are studied by using empirical potential molecular dynamics simulations. The energy transformation and the structural evolution have been studied. Five types of processes are observed: adsorption, hybridization, defects formation in diamond, atom emission and transmission. We find that the irradiation damage is closely related to the incident energy and impact position. In our simulations, as the projectile collides at a graphene atom, it transfers most of its energy to the primary knock-on atom, and defects are created in graphene. When the projectile moves perpendicular towards the center of a C-C bond in the graphene sheet, the energy transferred from the projectile to the atoms associated with the bond increases firstly and then decreases with the increasing incident energy, and the graphene sheet remains two-dimensional crystal structure after collision when the incident energy is larger than 360 eV. While the impact location is the center of a hexagonal ring on the graphene sheet, the energy transferred from the projectile to the atoms of the target ring is very small regardless of how large is the incident energy, and the graphene sheet is able to keep perfect crystal structure when the incident energy is larger than 34 eV.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., Phys. Rev. Lett. 97, 187401(2006)CrossRef
Peres, N.M.R., Guinea, F., Castro Neto, A.H., Phys. Rev. B 73, 125411 (2006)CrossRef
Ostovari, F., Abdi, Y., Ghasemi, F., Eur. Phys. J. Appl. Phys. 60, 30401 (2012)CrossRef
Zeng, H., Zhao, J., Wei, J.W., Eur. Phys. J. Appl. Phys. 53, 20602 (2011)CrossRef
Zhou, Y.G., Zu, X.T., Gao, F., Lv, H.F., Xiao, H.Y., Appl. Phys. Lett. 95, 123119 (2009)CrossRef
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004)CrossRef
Wallace, P.R., Phys. Rev. 71, 622 (1947)CrossRef
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., Rev. Mod. Phys. 81, 109 (2009)CrossRef
Lee, C., Wei, X., Kysar, J.W., Hone, J., Science 321, 385 (2008)CrossRef
Katsnelson, M.I., Mater. Today 10, 20 (2007)CrossRef
Tan, Y.-W., Zhang, Y., Bolotin, K., Zhao, Y., Adam, S., Hwang, E.H., Das Sarma, S., Stormer, H.L., Kim, P., Phys. Rev. Lett. 99, 246803 (2007)CrossRef
Lin, Y.M., Jenkins, K.A., Valdes-Garcia, A., Small, J.P., Farmer, D.B., Avouris, P., Nano Lett. 9, 422 (2009)CrossRef
Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K.L., Huang, Y., Duan, X., Nature 467, 305 (2010)CrossRef
Wang, X., Zhi, L., Müllen, K., Nano Lett. 8, 323 (2008)CrossRef
Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Wu, D., Adv. Mater. 22, 2743 (2010)CrossRef
Cheng, Z., Li, Q., Li, Z., Zhou, Q., Fang, Y., Nano Lett. 10, 1864 (2010)CrossRef
Rangel, N.L., Seminario, J.M., J. Chem. Phys. 132, 125102 (2010)CrossRef
Kotakoski, J., Meyer, J.C., Kurasch, S., Santos-Cottin, D., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. B 83, 245420 (2011)CrossRef
Wang, Z.G., Zhou, Y.G., Bang, J., Prange, M.P., Zhang, S.B., Gao, F., J. Phys. Chem. C 116, 16070 (2012)CrossRef
Zhang, C., Mao, F., Zhang, F.S., Eur. Phys. J. Appl. Phys. 64, 10401 (2013)CrossRef
Zhang, C., Mao, F., Zhang, F.S., J. Phys.: Condens. Matter 25, 235402 (2013)
Ugeda, M.M., Brihuega, I., Hiebel, F., Mallet, P., Veuillen, J.-Y., Gómez-Rodríguez, J.M., Ynduráin, F., Phys. Rev. B 85, 121402 (2012)CrossRef
Lusk, M.T., Carr, L.D., Phys. Rev. Lett. 100, 175503 (2008)CrossRef
Lehtinen, O., Kotakoski, J., Krasheninnikov, A.V., Tolvanen, A., Nordlund, K., Keinonen, J., Phys. Rev. B 81, 153401 (2010)CrossRef
Mao, F., Zhang, C., Zhang, Y.W., Zhang, F.S., Chin. Phys. Lett. 29, 076101 (2012)CrossRef
Bellido, E.P., Seminario, J.M., J. Phys. Chem. C 116, 4044 (2012)CrossRef
Mao, F., Zhang, C., Gao, C.Z., Dai, J., Zhang, F.S., J. Phys.: Condens. Matter 26, 085402 (2014)
Varchon, F., Feng, R., Hass, J., Li, X., Nguyen, B.N., Naud, C., Mallet, P., Veuillen, J.-Y., Berger, C., Conrad, E.H., Magaud, L., Phys. Rev. Lett. 99, 126805 (2007)CrossRef
Zhou, S.Y., Gweon, G.-H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.-H., Guinea, F., Castro Neto, A.H., Lanzara, A., Nat. Mater. 6, 770 (2007)CrossRef
Shi, Y., Dong, X., Chen, P., Wang, J., Li, L.-J., Phys. Rev. B 79, 115402 (2009)CrossRef
Giovannetti, G., Khomyakov, P.A., Brocks, G., Karpan, V.M., van den Brink, J., Kelly, P.J., Phys. Rev. Lett. 101, 026803 (2008)CrossRef
Vanin, M., Mortensen, J.J., Kelkkanen, A.K., Garcia-Lastra, J.M., Thygesen, K.S., Jacobsen, K.W., Phys. Rev. B 81, 081408 (2010)CrossRef
Starodub, E., Bostwick, A., Moreschini, L., Nie, S., Gabaly, F.E., McCarty, K.F., Rotenberg, E., Phys. Rev. B 83, 125428 (2011)CrossRef
Åhlgren, E.H., Hämäläinen, S.K., Lehtinen, O., Liljeroth, P., Kotakoski, J., Phys. Rev. B 88, 155419 (2013)CrossRef
Robertson, J., Mater. Sci. Eng. R 37, 129 (2002)CrossRef
Lee, J.-K., Lee, S.-C., Ahn, J.-P., Kim, S.-C., Wilson, J.I.B., John, Ph., J. Chem. Phys. 129, 234709 (2008)CrossRef
Wu, Y., Lin, Y.-M., Bol, A.A., Jenkins, K.A., Xia, F., Farmer, D.B., Zhu, Y., Avouris, Ph., Nature 472, 74 (2011)CrossRef
Plimpton, S.J., J. Comput. Phys. 117, 1 (1995)CrossRef
Stuart, S.J., Tutein, A.B., Harrison, J.A., J. Chem. Phys. 112, 6472 (2000)CrossRef
Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B., J. Phys.: Condens. Matter 14, 783 (2002)
Tersoff, J., Phys. Rev. B 39, 5566 (1989)CrossRef
Åhlgren, E.H., Kotakoski, J., Krasheninnikov, A.V., Phys. Rev. B 83, 115424 (2011)CrossRef
Tersoff, J., Phys. Rev. Lett. 61, 2879 (1988)CrossRef
Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, New York, 1985)CrossRefGoogle Scholar
Finnis, M.W., Prog. Mater. Sci. 52, 133 (2007)CrossRef
Li, L., Xu, M., Song, W., Ovcharenko, A., Appl. Surf. Sci. 286, 287 (2013)CrossRef
Pregler, S.K., Hayakawa, T., Yasumatsu, H., Kondow, T., Sinnott, S.B., Nucl. Instrum. Methods B 262, 240 (2007)CrossRef
Krantzman, K.D., Garrison, B.J., J. Phys. Chem. C 113, 3239 (2009)CrossRef
Krasheninnikov, A.V., Nordlund, K., Keinonen, J., Phys. Rev. B 65, 165423 (2002)CrossRef