Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-18T16:21:31.433Z Has data issue: false hasContentIssue false

Structural analysis of hydrogenated nanocrystalline silicon thin films as a function of substrate temperature during deposition

Published online by Cambridge University Press:  03 February 2014

Mustafa Anutgan*
Affiliation:
Department of Electrical and Electronics Engineering, Karabuk University, 78050 Karabuk, Turkey
Sema Uysal
Affiliation:
Department of Physics, Karabuk University, 78050 Karabuk, Turkey
Tamila Anutgan
Affiliation:
Department of Medical Engineering, Karabuk University, 78050 Karabuk, Turkey
Get access

Abstract

In this contribution, the micro- and macro-structure of plasma grown hydrogenated nanocrystalline silicon (nc-Si:H) thin films were followed with respect to substrate temperature (Ts) ranging from 80 °C to 200 °C. nc-Si:H films were deposited by plasma enhanced chemical vapor deposition technique using silane gas highly diluted by hydrogen and high RF power density. Micro-structure analysis was performed with grazing angle X-ray diffraction (GAXRD) and dispersive Raman spectroscopies. Parallelly, morphological properties of the films were investigated via field emission scanning electron microscopy (FE-SEM) by taking both surface and cross-sectional micrographs. GAXRD results suggest the presence of 4–5 nm nanocrystallites with the size almost independent of Ts. The detailed analysis of the Raman spectra reveals one- and two-phonon modes due to amorphous and crystalline silicon (c-Si), where all c-Si related peaks shifted to lower frequencies. Raman nanocrystalline volume fraction is found to be greater than 50% for all Ts; it increases together with the short-range order at elevated Ts. This micro-structural improvement with Ts is considered to be slight when compared to the FE-SEM-observed drastic changes of morphology, particularly the size of large conglomerates (35–250 nm). The behavior of micro- and macro-structure with Ts is correlated well with the previously determined bonding and lateral conductivity measurements. It seems to be the macro-structure that accounts for bonding and electrical properties of nc-Si:H thin films.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kattamis, A.Z., Holmes, R.J., Cheng, I.-C., Long, K., Sturm, J.C., Forrest, S.R., Wagner, S., IEEE Electron Device Lett. 27, 49 (2006)CrossRef
Girotra, K.S., Choi, Y.-M., Kim, B.-J., Song, Y.-R., Choi, B., Yang, S.-H., Kim, S., Lim, S., J. Soc. Inf. Disp. 15, 113 (2007)CrossRef
Chowdhury, A., Mukhopadhyay, S., Ray, S., Sol. Energy Mater Sol. Cells 93, 597 (2009)CrossRef
Ray, S., AIP Conf. Proc. 1451, 28 (2012)CrossRef
Lin, H.-C., Ho, K.-Y., Hsu, C.-C., Yan, J.-Y., Ho, J.-C., J. Phys. D 44, 475401 (2011)CrossRef
Villar, F., Escarré, J., Antony, A., Stella, M., Rojas, F., Asensi, J.M., Bertomeu, J., Andreu, J., Thin Solid Films 516, 584 (2008)CrossRef
Garrido, B., Perez-Rodriguez, A., Morante, J.R., Achiq, A., Gourbilleau, F., Madelon, R., Rizk, R., J. Vac. Sci. Technol. B 16, 1851 (1998)CrossRef
Mukhopadhyay, S., Chowdhury, A., Ray, S., Thin Solid Films 516, 6824 (2008)CrossRef
Chen, C.-Z., Qiu, S.-H., Liu, C.-Q., Wu, Y.-D., Li, P., Yu, C.-Y., Lin, X.-Y., J. Phys. D 41, 195413 (2008)CrossRef
Waman, V.S., Kamble, M.M., Pramod, M.R., Funde, A.M., Sathe, V.G., Gosavi, S.W., Jadkar, S.R., J. Nano-Electron. Phys. 3, 590 (2011)
Cheng, Q., Xu, S., Ostrikov, K.K., Nanotechnol. 20, 215606 (2009)CrossRef
Kim, W., Lee, J., Lee, J., Ko, E.-K., Lyou, J.H., Appl. Phys. A 79, 1813 (2004)
Bronsveld, P.C.P., Rath, J.K., Schropp, R.E.I., Mates, T., Fejfar, A., Rezek, B., Kocka, J., Appl. Phys. Lett. 89, 051922 (2006)CrossRef
Nasuno, Y., Kondo, M., Matsuda, A., Appl. Phys. Lett. 78, 2330 (2001)CrossRef
Parashar, A., Kumar, S., Gope, J., Rauthan, C.M.S., Hashmi, S.A., Dixit, P.N., J. Non-Cryst. Solids 356, 1774 (2010)CrossRef
Amrani, R., Abboud, P., Chahed, L., Cuminal, Y., Crys. Struc. Theory Appl. 1, 62 (2012)
Amrani, R., Pichot, F., Podlecki, J., Foucaran, A., Chahed, L., Cuminal, Y., J. Non-Cryst. Solids 358, 1978 (2012)CrossRef
Kocka, J., Stuchlikova, H., Stuchlik, J., Rezek, B., Mates, T., Svrcek, V., Fojtik, P., Pelant, I., Fejfar, A., J. Non-Cryst. Solids 299–302, 355 (2002)CrossRef
Lin, C.Y., Fang, Y.K., Chen, S.F., Lin, C.S., Chou, T.H., Hwang, S.B., Hwang, J.S., Lin, K.I., J. Non-Cryst. Solids 352, 44 (2006)CrossRef
Anutgan, T., Uysal, S., Curr. Appl. Phys. 13, 181 (2013)CrossRef
Vallat-Sauvain, E., Shah, A., Bailat, J., in Thin Film Solar Cells: Fabrication, Characterization, and Application, edited by Poortmans, J., Arkhipov, V., 1st edn. (John Wiley and Sons, England, 2007), pp. 133171Google Scholar
Langford, J.I., Boultif, A., Auffrédic, J.P., Louër, D., J. Appl. Crystallogr. 26, 22 (1993)CrossRef
McKee, C., Renault, J., Barker, J., Quantitative Analysis of Quartz in Perlite by X-ray Diffraction (New Mexico Bureau of Mines & Mineral Resources, Socorro, 1987)Google Scholar
Scherrer, P., Nachr. Ges. Wiss. Göttingen, Math.-Phys. Klasse 26, 98 (1918)
Zhixun, M.A., Xianbo, L., Guanglin, K., Junhao, C., Sci. China Ser. 43, 414 (2000)
Vavrunkova, V., van Elzakker, G., Zeman, M., Sutta, P., Phys. Status Solidi A 207, 548 (2010)CrossRef
Temple, P.A., Hathaway, C.E., Phys. Rev. B 7, 3685 (1973)CrossRef
Swain, B.P., Hwang, N.M., Solid State Sci. 11, 467 (2009)CrossRef
Han, D., Lorentzen, J.D., Weinberg-Wolf, J., McNeil, L.E., Wang, Q., J. Appl. Phys. 94, 2930 (2003)CrossRef
Street, R.A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991), pp. 4143CrossRefGoogle Scholar
Li, Z., Li, W., Jiang, Y., Cai, H., Gong, Y., He, J., J. Raman Spectrosc. 42, 415 (2011)CrossRef
Ledinský, M., Vetushka, A., Stuchlík, J., Mates, T., Fejfar, A., Kočka, J., Štěpánek, J., J. Non-Cryst. Solids 354, 2253 (2008)CrossRef
Bustarret, E., Hachicha, M.A., Brunel, M., Appl. Phys. Lett. 52, 1675 (1988)CrossRef
Islam, M.N., Pradhan, A., Kumar, S., J. Appl. Phys. 98, 024309 (2005)CrossRef
Fejfar, A., Mates, T., Certik, O., Rezek, B., Stuchlik, J., Pelant, I., Kocka, J., J. Non-Cryst. Solids 338–340, 303 (2004)CrossRef
Hadjadj, A., Beorchia, A., Roca i Cabarrocas, P., Boufendi, L., Huet, S., Bubendorff, J.L., J. Phys. D 34, 690 (2001)CrossRef
Mao, H.-Y., Lo, S.-Y., Wuu, D.-S., Wu, B.-R., Ou, S.-L., Hsieh, H.-Y., Horng, R.-H., Thin Solid Films 520, 5200 (2012)CrossRef
Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Meier, J., Niquille, X., Shah, A., in 3rd WCPEC, Osaka, 50-A3-01, 2003
Madan, A., Shaw, M.P., The Physics and Applications of Amorphous Semiconductors (Academic Press Inc., San Diego, 1988), pp. 97106Google Scholar