Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T06:30:17.027Z Has data issue: false hasContentIssue false

An inverse method for non-invasive viscosity measurements

Published online by Cambridge University Press:  14 March 2007

J.-M. Fullana*
Affiliation:
Service de Biophysique, Laboratoires Innothera, 7–9 Av. F.V. Raspail, 94110 Arcueil, France
N. Dispot
Affiliation:
Matière et Systèmes Complexes, Université Paris 7, France
P. Flaud
Affiliation:
Matière et Systèmes Complexes, Université Paris 7, France
M. Rossi
Affiliation:
Laboratoire de Modélisation en Mécanique, Université Paris 6, France
Get access

Abstract

A procedure is presented which allows to compute in a non-invasive manner, blood viscosity through flow measurements obtained at a fixed vessel cross-section. The data set is made of measurements (artery radius and spatially discrete velocity profiles) performed at given time intervals for which the signal to noise ratio is typical of U.S. Doppler velocimetry in clinical situation. This identification approach is based on the minimization, through a backpropagation algorithm, of a cost function quantifying the distance between numerical data obtained through Navier-Stokes simulations and experimental measurements. Since this cost function implicitly depends on the value of viscosity used in numerical simulations, its minimization determines an effective viscosity which is shown to be robust to measurement errors and sampling time. Such an approach is shown to work in an in vitro experiment, and seems to be suitable for in vivo measurements of viscosity by the atraumatic techniques of Doppler echography.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Womersley, J.R., J. Physiol. 127, 553 (1955) CrossRef
D.A. McDonald, Blood flow in arteries (Edward Arnold Publishers Inc., London, England, 1974)
T.J. Pedley, The fluid mechanics of large blood vessels (Cambridge University Press, London, 1980)
Quemada, D., Biorheology 18, 501 (1981)
Rogova, I., Flaud, P., Arch. Physiol. Biochem. 103, 47 (1995) CrossRef
Zagzoule, M., Marc-Vergnes, J.P., J. Biomech. 19, 1015 (1986) CrossRef
Zagzoule, M., Cassot, F., Marc-Vergnes, J.-P., J. Biomech. 33, 395 (2000)
C.G. Caro, T.J. Pedley, R.C. Schroter, W.A. Seed, The mechanics of the circulation (Oxford Univ. Press, New York, 1978)
Y.C. Fung, Biomechanics: Mechanical properties of living tissues (Springer-Verlag, New York, 1993)
G. Sieber, Biofluid Mechanics Proceedings of the Third International Symposium, edited by D. Liepsch (VDI Verlag, 1994), pp. 683–690
P. Tanguy, Hydrodynamique d'un écoulement pulsé un tuyau déformable. Méthode indirecte de détermination du gradient de pression induisant l'écoulement et du module d'élasticité de la paroi, Ph.D. thesis, Université de Paris VII, 1979
Bensalah, A., Flaud, P., J. Biophys. Med. Nucl. 7, 127 (1983)
A. Bensalah, P. Flaud, On the use of the Womersley's Theory for the computing of hemodynamical parameters from ultrasonic velocity profiles: in vivo application to the case of the blood viscosity, in Biofluid Mechanics Proceedings of the Third International Symposium, edited by D. Liepsch (VDI Verlag, 1994)
F. Bruni, Méthodes d'extraction de paramètres caractéristiques de l'état artériel par des méthodes ultrasonores non invasives, Ph.D. thesis, Université Denis Diderot, 1998
P. Flaud, A. Bensalah, Indirect noninvasive determination of newtonian blood viscosity: an integral method using ultrasonic arterial blood velocity profiles, submitted (2004)
J. Hertz, A. Krogh, R.G. Palmer, Introduction to the theory of neural computation, ch. Optimization Problems in Image Processing (Addison-Wesley, 1991), pp. 81–87
A. Tarantola, Inverse problem theory (Elsevier, 1987)
Fullana, J.M., Le Gal, P., Rossi, M., Zaleski, S., Physica D 102, 37 (1997) CrossRef
Lagrée, P.-Y., Eur. Phys. J. Appl. Phys. 9, 153 (2000) CrossRef
P.E. Gill, W. Murray, M.H. Wright, Practical optimization (Academic Press, 1981)
Fullana, J.M., Rossi, M., Zaleski, S., Physica D 103, 564 (1997) CrossRef
Flaud, P., Bensalah, A., Peronneau, P., Ultrasound Med. Biol. 23, 425 (1997) CrossRef