Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-02T15:48:52.480Z Has data issue: false hasContentIssue false

Boltzmann equation and Monte Carlo analysisof thespatiotemporal electron relaxation in nonisothermal plasmas

Published online by Cambridge University Press:  06 June 2002

D. Loffhagen*
Affiliation:
Institut für Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald, Germany
R. Winkler
Affiliation:
Institut für Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald, Germany
Z. Donkó
Affiliation:
Research Institute for Solid State Physics and Optics, PO Box 49, 1525 Budapest, Hungary
Get access

Abstract

The spatiotemporal relaxation of electrons in spatiallyone-dimensional plasmas acted upon by electric fields isinvestigated on the basis of the space- and time-dependentelectron Boltzmann equation. The relaxation process is treatedusing the two-term approximation of an expansion of the electronvelocity distribution function in Legendre polynomials. To verifythe complex Boltzmann equation approach by a completelyindependent kinetic method, results for inhomogeneous column-anodeplasmas of glow discharges between plane electrodes are comparedwith corresponding ones obtained by Monte Carlo simulations. Thespatiotemporal electron relaxation in argon plasmas, subjected toa space-independent electric field and maintained by atime-independent inflow of electrons at the cathode side of theplasma region, is considered. Starting from steady state at agiven electric field, the relaxation process is initiated by apulse-like change of the electric field strength and is traceduntil the spatially structured, time-independent state associatedto the changed field is reached. The behaviour of the velocitydistribution function and macroscopic quantities of the electronsin space and time is analyzed for enlarged and reduced electricfield strengths typical of the column region of glow discharges.In particular, the spatiotemporal reformation of plasma structureshas been found to progress in two phases, i.e., existingstructures in the distribution are driven to merge in wide plasmaregion first, followed by a formation phase of new spatialstructures which are induced by the cathode-sided inflow ofelectrons. The results for the macroscopic quantities and theisotropic distribution functions obtained by Boltzmann and MonteCarlo calculations agree very well during the spatiotemporaltransient process as well as in the new steady state finallyreached.

Keywords

Information

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Rockwood, S.D., Phys. Rev. A 8, 2348 (1973) CrossRef
J. Wilhelm, R. Winkler, J. Phys. Coll. 40 (C7 Suppl. 7), 251 (1979)
Morgan, W.L., Penetrante, B.M., Comput. Phys. Commun. 58, 127 (1990) CrossRef
Estocq, E., Delouya, G., Bretagne, J., Appl. Phys. B 56, 209 (1993) CrossRef
Loffhagen, D., Winkler, R., J. Comput. Phys. 112, 91 (1994) CrossRef
Loffhagen, D., Winkler, R., J. Phys. D: Appl. Phys. 29, 618 (1996) CrossRef
Hall, C.A., Lowke, J.J., J. Comput. Phys. 19, 297 (1975) CrossRef
Shveigert, V.A., Sov. J. Plasma Phys. 15, 714 (1989)
DiCarlo, J.V., Kushner, M.J., J. Appl. Phys. 66, 5763 (1989) CrossRef
Paulick, T.C., J. Appl. Phys. 67, 2774 (1990) CrossRef
Busch, C., Kortshagen, U., Phys. Rev. E 51, 280 (1995) CrossRef
Sigeneger, F., Winkler, R., Contrib. Plasma Phys. 36, 551 (1996) CrossRef
Uhrlandt, D., Winkler, R., J. Phys. D: Appl. Phys. 29, 115 (1996) CrossRef
Yang, Y., Wu, H., J. Appl. Phys. 80, 3699 (1996) CrossRef
Alves, L.L., Gousset, G., Ferreira, C.M., Phys. Rev. E 55, 890 (1997) CrossRef
Petrov, G., Winkler, R., J. Phys. D: Appl. Phys. 30, 53 (1997) CrossRef
Arndt, S.C., Uhrlandt, D., Winkler, R., Plasma Chem. Plasma Process. 21, 175 (2001) CrossRef
Goedheer, W.J., Meijer, P.M., J. Nucl. Mater. 200, 282 (1993) CrossRef
Mahmoud, M.O.M., Yousfi, M., J. Appl. Phys. 89, 5935 (1997) CrossRef
Loffhagen, D., Winkler, R., J. Phys. D: Appl. Phys. 34, 1355 (2001) CrossRef
Skullerud, H.R., J. Phys. D: Appl. Phys. 1, 1567 (1968) CrossRef
Braglia, G.L., Physica 92C, 91 (1977)
Boeuf, J.P., Pitchford, L.C., IEEE Trans. Plasma Sci. 19, 286 (1991) CrossRef
Fiala, A., Pitchford, L.C., Boeuf, J.P., Phys. Rev. E 49, 5607 (1994) CrossRef
Bogaerts, A., Gijbels, R., Goedheer, W.J., J. Appl. Phys. 78, 2233 (1995) CrossRef
Donkó, Z., Rózsa, K., Tobin, R.C., J. Phys. D: Appl. Phys. 29, 105 (1996) CrossRef
Simko, T., Martisovits, V., Bretagne, J., Gousset, G., Phys. Rev. E 56, 5908 (1997) CrossRef
Maeda, K., Makabe, T., Nakano, N., Bzenic, S., Petrovic, Z.Lj., Phys. Rev. E 55, 5901 (1997) CrossRef
Bzenic, S., Petrovic, Z.Lj., Raspopovic, M., Makabe, T., Jpn. J. Appl. Phys. 38, 6077 (1999) CrossRef
Bogaerts, A., Gijbels, R., Goedheer, W., J. Anal. At. Spectrom. 16, 750 (2001) CrossRef
Winkler, R., Petrov, G., Sigeneger, F., Uhrlandt, D., Plasma Sources Sci. Technol. 6, 118 (1997) CrossRef
Winkler, R., Wilhelm, J., Schüller, V., Beitr. Plasma Phys. 10, 51 (1970) CrossRef
Leyh, H., Loffhagen, D., Winkler, R., Comput. Phys. Commun. 113, 33 (1998) CrossRef
D.U. von Rosenberg, Methods for the Numerical Solution of Partial Differential Equations (American Elsevier, New York, 1969)
Boeuf, J.P., Marode, E., J. Phys. D: Appl. Phys. 15, 2169 (1982) CrossRef
Longo, S., Plasma Sources Sci. Technol. 9, 468 (2000) CrossRef
Penetrante, B.M., Bardsley, J.N., Pitchford, L.C., J. Phys. D: Appl. Phys. 18, 1087 (1985) CrossRef
Yousfi, M., Hennad, A., Alkaa, A., Phys. Rev. E 49, 3264 (1994) CrossRef
A.V. Phelps (2001), ftp://jila.colorado.edu/collision_data/
Sigeneger, F., Winkler, R., Plasma Chem. Plasma Process. 17, 1 (1997) CrossRef