Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:11:48.681Z Has data issue: false hasContentIssue false

Conductivity modulation of carbon nanotubes through hybridization with quantum dots and gold nanoparticles

Published online by Cambridge University Press:  15 November 2013

Suresh Kumar*
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore 560012, India
Mridula Mittal
Affiliation:
Biomolecular Electronics and Nanotechnology Division, Central Scientific Instruments Organization, Chandigarh 160030, India
Inderpreet Kaur
Affiliation:
Biomolecular Electronics and Nanotechnology Division, Central Scientific Instruments Organization, Chandigarh 160030, India
Keya Dharamvir
Affiliation:
Department of Physics, Panjab University, Chandigarh 160014, India
Banshi Dhar Pant
Affiliation:
Central Electronics Engineering Research Institute, Pilani, Rajasthan, India
Lalit M. Bharadwaj
Affiliation:
Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India
Get access

Abstract

CdSe/ZnS quantum dots and gold nanoparticles have been grown in-situ onto the surface of carbon nanotubes. The nanohybrids were then, dielectrophoretically aligned between gold microelectrodes and the electrical response was investigated. The conductance of nanotube-quantum dot hybrid was found to be sensitive to incident white light. The electrical resistance of the carbon nanotube-quantum dot nanohybrid decreased from 1.9 × 104 Ω (in the dark) to 0.91 × 104 Ω after the impact of white light. The electrical resistance of the carbon nanotube-gold nanoparticle nanohybrid was calculated to be 1.86 × 103 Ω, which is much smaller than that of carboxylated carbon nanotubes (4.03 × 105 Ω). Such a modulation in electrical properties may enhance the use of carbon nanotubes in future nanoscale devices.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S., Nature 354, 56 (1991)CrossRef
Ajayan, P.M., Chem. Rev. 99, 1787 (1999)CrossRef
Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Science 297, 787 (2002)CrossRef
Postma, H.W.C., Teepen, T., Yao, Z., Grifoni, M., Dekker, C., Science 293, 76 (2001)CrossRef
Lee, J.U., Appl. Phys. Lett. 87, 073101 (2005)CrossRef
Derycke, V., Martel, R., Appenzeller, J., Avouris, P., Nano Lett. 1, 453 (2001)CrossRef
Meunier, V., Kalinin, S.V., Sumpter, B.G., Phys. Rev. Lett. 98, 056401 (2007)CrossRef
Kumar, S., Kaur, I., Dharamvir, K., Bharadwaj, L.M., J. Coll. Interf. Sci. 369, 23 (2012)CrossRef
Zhu, L., Lu, G., Chen, J., J. Heat Transf. 130, 044502 (2008)CrossRef
Smyder, J.A., Krauss, T.D., Mater. Today 14, 382 (2011)CrossRef
El-Sayed, M.A., Acc. Chem. Res. 37, 326 (2004)CrossRef
Heyes, C.D., Kobitski, A.Y., Breus, V.V., Nienhaus, G.U., Phys. Rev. B 75, 125431 (2007)CrossRef
Brust, M., Fink, J., Bethell, D., Schiffrin, D.J., Kiely, C., J. Chem. Soc., Chem. Commun. 16, 1655 (1995)CrossRef
Chen, S., Ingram, R.S., Hostetler, M.J., Pietron, J.J., Murray, R.W., Schaaff, T.G., Khoury, J.T., Alvarez, M.M., Whetten, R.L., Science 280, 2098 (1998)CrossRef
Chen, S., Murray, R.W., J. Phys. Chem. B 103, 9996 (1999)CrossRef
Dimaki, M., Bøggild, P., Nanotechnology 15, 1095 (2004)CrossRef
Zhang, Z.B., Liu, X.J., Campbell, E.E.B., Zhang, S.L., J. Appl. Phys. 98, 056103 (2005)CrossRef
Sahoo, S., Husale, S., Karna, S., Nayak, S.K., Ajayan, P.M., J. Am. Chem. Soc. 133, 4005 (2011)CrossRef
Zheng, L., Li, S.D., Brody, J.P., Burke, P.J., Langmuir 20, 8612 (2004)CrossRef
Kumar, S., Kaur, H., Kaur, H., Kaur, I., Dharamvir, K., Bharadwaj, L.M., J. Mater. Sci. 47, 1489 (2012)CrossRef
Shi, J., Qin, Y., Wu, W., Li, X., Guo, Z.X., Zhu, D., Carbon 42, 423 (2004)PubMed
Kalasad, M.N., Rabinal, M.K., Mulimani, B.G., Langmuir 25, 12729 (2009)CrossRef
Shen, C., Li, K., Ming, J., Chinese Optics Lett. 9, S10703 (2011)CrossRef
Zhu, C.Q., Wang, P., Wang, X., Li, Y., Nano. Res. Lett. 3, 213 (2008)CrossRef