Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-18T05:25:43.362Z Has data issue: false hasContentIssue false

Density functional investigation of structural, electronic and magnetic properties of Cu-codoped ZnO nanotubes

Published online by Cambridge University Press:  08 August 2014

Borhan Arghavani Nia*
Affiliation:
Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Masoud Shahrokhi
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano-Science and Nano-Technology Research Center, Razi University, Kermanshah, Iran
Rostam Moradian
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano-Science and Nano-Technology Research Center, Razi University, Kermanshah, Iran
Iraj Manouchehri
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano-Science and Nano-Technology Research Center, Razi University, Kermanshah, Iran
Get access

Abstract

Using the first-principles calculations based on the spin-polarized density functional theory (DFT), we investigated the structural, electronic and magnetic properties of Cu-doped single walled ZnO nanotubes (SWZnONTs). Our results show that for a unit cell with 40 Zn and 40 O atoms, substitution of a single Zn atom by a Cu leads from a semiconductor to a ferromagnetic (FM) half-metallic phase transition with 100% spin polarization. In this case the total magnetic moment of super cell is 1.0 μB. To investigate the effects of Cu-codpoed SWZnONTs two different configurations are considered, first we assumed the two Zn atoms replaced by two Cu atoms are close and second they are far from each other. When Cu atoms are at the nearest-neighboring positions, the antiferromagnetism (AFM) phase is stable, while increasing the distance between the two Cu atoms, the ferromagnetism stability increases. In the AFM phase the structures are nonmagnetic semiconductors, but in the FM phase all these systems are half-metallic systems with 100% spin polarization, so it can be used as magnetic nanostructure and future applications in permanent magnetism, magnetic recording, and spintronics.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, X., Careg, W.P., Yee, S., Sensors Actuators B 28, 63 (1995)CrossRef
Ohaya, Y., Ueda, M., Takahashi, Y., Jpn J. Appl. Phys. 35, 4738 (1996)CrossRef
Natsume, Y., Thin Solid Films 372, 30 (2000)CrossRef
Paul, G.K., Bandyapadhyay, S., Sen, S.K., Phys. Status Solidi A 191, 509 (2002)3.0.CO;2-D>CrossRef
Tang, Z.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., Appl. Phys. Lett. 72, 3270 (1998)CrossRef
Shionoya, S., Yen, W.M., Phosphor Handbook (CRC Press, Boka Raton, 1999), p. 255Google Scholar
Regan, B.O., Gratzel, M., Nature 353, 737 (1991)CrossRef
Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Vrutin, V., Cho, S.J., Morkoc, H., J. Appl. Phys. 98, 041301 (2005)CrossRef
Dietl, T., Ohono, H., Matsukura, F., Cibert, J., Ferrand, D., Science 287, 1019 (2000)CrossRef
Liu, C., Yun, F., Morkoc, H., J. Mater. Sci. 16, 555 (2005)
Yan, W.S., Sun, Z.H., Liu, Q.H., Li, Z.R., Shi, T.F., Wang, F., Qi, Z.M., Zhang, G.B., Wei, S.Q., Zhang, H.W., Chen, Z.Z., Appl. Phys. Lett. 90, 242509 (2007)CrossRef
Hu, S.J., Yan, S.S., Zhao, M.W., Mei, L.M., Phys. Rev. B 73, 245205 (2006)CrossRef
Fritsch, D., Schmidt, H., Grundmann, M., Appl. Phys. Lett. 88, 134104 (2006)CrossRef
Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., Coey, J.M., Phys. Rev. Lett. 93, 177206 (2004)CrossRef
Hou, D.L., Ye, X.J., Meng, H.J., Zhou, H.J., Li, X.L., Zhen, C.M., Tang, G.D., Appl. Phys. Lett. 90, 142502 (2007)CrossRef
Tiwari, A., Snure, M., Kumar, D., Abiade, J.T., Appl. Phys. Lett. 92, 062509 (2008)CrossRef
Sudakar, C., Thakur, J.S., Lawes, G., Naik, R., Naik, V.M., Phys. Rev. B 75, 054423 (2007)CrossRef
Khan, Z.A., Ghosh, S., Appl. Phys. Lett. 99, 042504 (2011)CrossRef
Huang, L.M., Rosa, A.L., Ahuja, R., Phys. Rev. B 74, 075206 (2006)CrossRef
Huang, D., Zhao, Y.J., Chen, D.H., Shao, Y.Z., Appl. Phys. Lett. 92, 182509 (2008)CrossRef
Ferhat, M., Zaoui, A., Ahuja, R., Appl. Phys. Lett. 94, 142502 (2009)CrossRef
Li, X.F., Zhang, J., Xu, B., Yao, K.L., J. Magn. Magn. Mater. 324, 584 (2012)CrossRef
Wang, Q., Wang, J., Zhong, X., Tan, Q., Zhou, Y., Solid State Commun. 152, 50 (2012)CrossRef
Wu, J.J.S., Liu, C., Wu, C.T., Chen, K.H., Chen, L.C., Appl. Phys. Lett. 81, 1312 (2002)CrossRef
Zhang, X.H., Xie, S.Y., Jiang, Z.Y., Zhang, X.Z., Tian, Q., Xie, Z.X., Huang, R.B., Zheng, L.S., J. Phys. Chem. B 107, 10114 (2003)CrossRef
Xing, Y.J., Xi, Z.H., Xue, Z.Q., Zhang, X.D., Song, J.H., Wang, R.M., Xu, J., Song, Y., Zhang, S.L., Yu, D.P., Appl. Phys. Lett. 83, 1689 (2003)CrossRef
Tu, Z.C., Hu, X., Phys. Rev. B 74, 035434 (2006)CrossRef
Moradian, R., Shahrokhi, M., Physica E 44, 1760 (2012)CrossRef
Moradian, R., Shahrokhi, M., J. Phys. Chem. Solids 74, 1063 (2013)CrossRef
Mo, X.H., Gao, J., Goodwin, J.G., Catal. Today 147, 126 (2009)CrossRef
Zhang, C.W., Han, C., Yan, S.S., Zheng, F.B., Europhys. Lett. 95, 47011 (2011)CrossRef
Zheng, F.B., Zhang, C.W., Wang, P.J., Luan, H.X., J. Appl. Phys. 111, 044329 (2012)CrossRef
Zhang, L., Huang, H., Appl. Phys. Lett. 90, 023115 (2007)CrossRef
Song, D.M., Li, J.C., Comput. Mater. Sci. 65, 175 (2012)CrossRef
Blaha, P., Singh, D., Sorantin, P.I., Schwarz, K., Phys. Rev. B 46, 1321 (1992)CrossRef
Blaha, P., Schwarz, K., WIEN2k (Vienna University of Technology Austria, 2002), http://www.wien2k.at/Google Scholar
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976)CrossRef
Xu, H., Zhang, R.Q., Zhang, X., Rosa, A.L., Frauenheim, Th., Nanotechnology 18, 485713 (2007)CrossRef
Ye, L.H., Freeman, A.J., Delley, B., Phys. Rev. B 73, 033203 (2006)CrossRef
Yong, Y., Wang, Z., Liu, K., Song, B., He, P., Comput. Theor. Chem. 989, 90 (2012)CrossRef