Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-17T07:18:19.066Z Has data issue: false hasContentIssue false

Dislocation luminescence in plastically deformed silicon crystals: effect of dislocation intersection and oxygen decoration

Published online by Cambridge University Press:  15 July 2004

E. Leoni
Affiliation:
INFM and Department of Materials Science, University of Milano-Bicocca, Via Cozzi, 53 Milano, Italy
S. Binetti*
Affiliation:
INFM and Department of Materials Science, University of Milano-Bicocca, Via Cozzi, 53 Milano, Italy
B. Pichaud
Affiliation:
Lab. TECSEN UMR6122, Univ. Aix-Marseille III, 13397 Marseille Cedex 20, France
S. Pizzini
Affiliation:
INFM and Department of Materials Science, University of Milano-Bicocca, Via Cozzi, 53 Milano, Italy
Get access

Abstract

This paper is addressed to the discussion of the effect of the dislocation structure and the impurity contamination on the photoluminescence of Czochralski (Cz) silicon in the range of the D1 emission at 0.8 eV. Two types of dislocation systems were considered. One consists of intersecting hexagonal half loops of screw and 60° segments. The other one consists of a set of non-intersecting, parallel 60° dislocations. In both cases the plastic deformation processes were carried out at 670 °C, taking care to avoid unwanted impurity contamination. It is shown that the PL emission of pure 60° dislocations in the D1 region is missing the 0.807 eV component and consists of a narrow band at 0.817 eV superimposed onto a broad background centered at 0.830 eV. It is also shown that a system of intersecting half loops presents both the 0.807 eV and the 0.817 eV components. The effect of thermal annealing at 800 °C was shown to induce oxygen precipitation effects, revealed by supplementary spectral features. It is eventually demonstrated that the set up of the D1 band is not necessarily connected with the contamination of 60° dislocations with metallic impurities. The major role of oxygen on the dislocation luminescence is eventually experimentally confirmed.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Drozdov, N. A., Patrin, A. A., V. D. Tkachev JEPT Lett. 23, 598 (1976)
Shevchenko, S. A., Ossipyan, Yu. A., Mchedlidze, T. R., Steinman, A. A., Batto, R. A., Phys. Stat. Sol. A 146, 745 (1994) CrossRef
Schevchenko, S. A., Izotov, A. N., Phys. Stat. Sol. A 148, K1 (1995) CrossRef
Sauer, R., Weber, J., Stolz, J., Weber, E. R., Kuster, K. H., Alexander, H., Appl. Phys. A 36, 1 (1985) CrossRef
Pizzini, S., Acciarri, M., Leoni, E., Le Donne, A., Phys. Stat. Sol. B 22, 141 (2000) 3.0.CO;2-H>CrossRef
Binetti, S., Somaschini, R., Le Donne, A., Leoni, E., Pizzini, S., Li, D., Yang, D., J. Phys. Cond. Matter 14, 13247 (2002) CrossRef
Binetti, S., Pizzini, S., Leoni, E., Somaschini, R., Castaldini, A., Cavallini, A., J. Appl. Phys. 92, 2437 (2002) CrossRef
Tajima, M., Takeno, H., Abe, T., Mater. Sci. Forum 83–87, 1372 (1992)
Tajima, M., Tokita, M., Warashina, M., Mater. Sci. Forum 196-201, 1749 (1995) CrossRef
Cavalcoli, D., Cavallini, A., Gombia, E., Phys. Rev. B 56, 10208 (1997) CrossRef
E. Leoni, L. Martinelli, S. Binetti, G. Borionetti, S. Pizzini, submitted to Physica B (2003)
Pizzini, S., Leoni, E., Binetti, S., Acciarri, M., Le Donne, A., Pichaud, B., Solid State Phenom. 96-98, 273 (2004) CrossRef
Weman, H., Monemar, B., Oerlein, G. S., Jeng, S. J., Phys. Rev. B 42, 3109 (1990) CrossRef