Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T20:08:45.487Z Has data issue: false hasContentIssue false

Efficient field emission from structured gold nanowire cathodes

Published online by Cambridge University Press:  30 October 2009

A. Navitski*
Affiliation:
FB C Physik, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
G. Müller
Affiliation:
FB C Physik, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
V. Sakharuk
Affiliation:
FB C Physik, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
T. W. Cornelius
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
C. Trautmann
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
S. Karim
Affiliation:
PINSTECH, Islamabad, Pakistan
Get access

Abstract

Regular patch arrays of random gold nanostructures were fabricated by electrochemical deposition of nanowires in ion track-etched templates. During ion irradiation with GeV ions of fluence 106, 107, or 108 cm−2, a shadow mask was used resulting in templates structured with square arrays of 50 μm holes and 100 or 150 μm pitch. The Au nanowires grown in the track-etched pores had a length of 7–28 μm and a diameter of ~300 nm, and were either solitary or clustered after template dissolution. The structured wire ensembles were systematically investigated with scanning electron and field emission scanning microscopy. Field emission with about 90% efficiency was achieved for wide-spaced patch arrays with medium and high number of Au nanowires at 1500 V for 20 μm anode distance. The current carrying capability of the patches strongly varied between 40 nA and 90 μA. The corresponding processing effects are correlated to adsorbates and nanostructural changes of the wires which give suitable hints for the optimization of structured Au nanowire cathodes.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Milne, W.I., Teo, K.B.K., Amaratunga, G.A.J., Legagneux, P., Gangloff, L., Schnell, J.P., Semet, V., Binh, V.T., Groening, O., J. Mater. Chem. 14, 933 (2004), and references therein CrossRef
Xu, N.S., Huq, S.E., Mater. Sci. Eng. R 48, 47 (2005), and references therein CrossRef
Hsu, D.S.Y., Shaw, J.L., J. Appl. Phys. 98, 014314 (2005) CrossRef
Manohara, H.M., Bronikowski, M.J., Hoenk, M., Hunt, B.D., Siegel, P.H., J. Vac. Sci. Technol. B 23, 157 (2005) CrossRef
Lee, J.H., Lee, S.H., Kim, W.S., Lee, H.J., Heo, J.N., Jeong, T.W., Choi, C.H., Kim, J.M., Park, J.H., Ha, J.S., Lee, H.J., Moon, J.W., Yoo, M.A., Nam, J.W., Cho, S.H., Yoon, T.I., Kim, B.S., Choe, D.H., J. Vac. Sci. Technol. B 23, 718 (2005) CrossRef
Toimil-Molares, M.E., Brötz, J., Buschmann, V., Dobrev, D., Neumann, R., Scholz, R., Schuchert, I.U., Trautmann, C., Vetter, J., Nucl. Instrum. Meth. Phys. Res. B 185, 192 (2001) CrossRef
Vila, L., Vincent, P., Dauginet-De Pra, L., Pirio, G., Minoux, E., Gangloff, L., Demoustier-Champagne, S., Sarazin, N., Ferain, E., Legras, R., Piraux, L., Legagneux, P., Nano Lett. 4, 521 (2004) CrossRef
Liu, J., Duan, J.L., Toimil-Molares, M.E., Karim, S., Cornelius, T.W., Dobrev, D., Yao, H.J., Sun, Y.M., Hou, M.D., Mo, D., Wang, Z.G., Neumann, R., Nanotechnology 17, 1922 (2006) CrossRef
Maurer, F., Dangwal, A., Lysenkov, D., Müller, G., Toimil-Molares, M.E., Trautmann, C., Brötz, J., Fuess, H., Nucl. Instrum. Meth. Phys. Res. B 245, 337 (2006) CrossRef
Dangwal, A., Müller, G., Maurer, F., Brötz, J., Fuess, H., J. Vac. Sci. Technol. B 25, 586 (2007) CrossRef
Dangwal, A., Pandey, C.S., Müller, G., Karim, S., Cornelius, T.W., Trautmann, C., Appl. Phys. Lett. 92, 063115 (2008) CrossRef
Lysenkov, D., Mueller, G., Int. J. Nanotechnol. 2, 239 (2005) CrossRef
Zhong, D.Y., Zhang, G.Y., Liu, S., Sakurai, T., Wang, E.G., Appl. Phys. Lett. 80, 506 (2002) CrossRef
A. Navitski, G. Mueller, T.W. Cornelius, C. Trautmann, Technical Digest of 21st Int. Conf. Vacuum Nanoelectronics, Wroclaw, 2008, p. 75 and EM5 on CD
COMSOL Multiphysics $^{\circledR}$ 3.5a, www.comsol.com
S. Karim, Dissertation, Chem. Dep. Univ. Marburg, Germany, 2007
A. Navitski, V. Sakharuk, F. Jordan, G. Müller, S. Müller, M. Rauber, M.E. Toimil-Molares, C. Trautmann, Technical Digest of 22st Int. Conf. Vacuum Nanoelectronics, Hamamatsu, 2009, p. 137
Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J.M., Kern, K., Appl. Phys. Lett. 76, 2071 (2000) CrossRef
Karim, S. S, M.E. Toimil-Molares, A.G. Balogh, W. Ensinger, T.W. Cornelius, E.U. Khan, R. Neumann, Nanotechnology 17, 5954 (2006) CrossRef