Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-06T16:52:56.232Z Has data issue: false hasContentIssue false

Electrochemical properties comparison of the polypyrrole nanotube and polyaniline nanofiber applied in supercapacitor

Published online by Cambridge University Press:  23 February 2012

J.H. Liu*
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
J.W. An
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
Y.X. Ma
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
M.L. Li
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
R.B. Ma
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
M. Yu
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
S.M. Li
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China
*
Get access

Abstract

To exploit the potential application of the conductive polymers in incorporating with carbon-based materials, polypyrrole (PPY) nanotube and polyaniline (PANI) nanofiber were synthesized and the electrochemical properties were compared. The morphology, texture and chemical structure of PPY and PANI were tested employing SEM, TEM, FTIR and XPS. The results of electrochemical tests demonstrate that the specific capacitance of PPY nanotube is as high as 463 F/g at a current density of 0.3 A/g, much higher than that of PANI nanofiber (243 F/g). Furthermore, at a current density of 0.8 A/g, the capacitance of PPY nanotube is 172 F/g, higher than that of PANI nanofiber (104 F/g). Additionally, after the long-term charge-discharge test at a current density of 1.5 A/g, the preserved capacitance of PPY nanotube is still higher than that of PANI nanofiber (106.5 F/g vs. 75 F/g). The EIS measurement illustrates that the PPY nanotube shows lower contact interface resistance and shorter ion diffusion path than the PANI nanofiber. It suggests that the PPY nanotube is a promising material to be applied in supercapacitor rather than the PANI nanofiber, because of its extended internal cavity surface area and pore volume.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, Q. et al., ACS Nano 4, 1963 (2010)CrossRef
Xu, J.J. et al., ACS Nano 4, 5019 (2010)CrossRef
Zhang, K. et al., Chem. Mater. 22, 1392 (2010)CrossRef
Miller, J.R., Simon, P., Science 321, 651 (2008)CrossRefPubMed
Zhu, Y. et al., Science 332, 1537 (2011)CrossRef
Service, R.F., Science 313, 902 (2006)CrossRefPubMed
Ismail, Y.A. et al., J. Electrochem. Soc. 156, A313 (2009)CrossRef
Yang, C., Liu, P., Synth. Met. 160, 768 (2010)CrossRef
Xu, Y.L. et al., Compos. Sci. Technol. 67, 2981 (2007)
An, K.H. et al., J. Electrochem. Soc. 149, A1058 (2002)CrossRef
Chen, G.Z. et al., Chem. Mater. 14, 1610 (2002)
Fang, Y.P. et al., J. Power Sources 195, 674 (2010)CrossRef
Hughes, M. et al., Adv. Mat. 14, 382 (2002)3.0.CO;2-Y>CrossRef
Deng, M.G. et al., Acta Chim. Sin. 63, 1127 (2005)
Yau, S.T., Liu, Q.A., Nayfeh, M.H., J. Power Sources 195, 7480 (2010)
Park, J.H., Park, O.O., J. Power Sources 111, 185 (2002)CrossRef
Jang, J. et al., Carbon 43, 2730 (2005)CrossRefPubMed
Yan, X.B. et al., Nanoscale 3, 212 (2011)CrossRefPubMed
Dean, C.R. et al., Nature Nanotechnol. 5, 722 (2010)CrossRef
Miller, J.R., Outlaw, R.A., Holloway, B.C., Science 329, 1637 (2010)CrossRefPubMed
Biswas, S., Drzal, L.T., Chem. Mater. 22, 5667 (2010)CrossRef
Lee, J.H., Bose, S., Kim, N.H., Kuila, T., Lau, K.T., Nanotechnology 22 (2011) DOI: 10.1088/0957-4484/22/29/295202
Ma, Y.W. et al., J. Power Sources 196, 5990 (2011)
Kim, K.S., Kim, I.J., Park, S.J., Synth. Met. 160, 2355 (2010)CrossRef
Zhao, Y.C. et al., Electrochim Acta 56, 1967 (2011)CrossRef
Peng, X.Y. et al., Carbon 49, 3488 (2011)CrossRef
Mishra, A.K., Ramaprabhu, S., J. Phys. Chem. C 115, 14006 (2011)CrossRef
Liu, S. et al., New J. Chem. 35, 369 (2011)CrossRef
Gao, Z. et al., Chem. Mater. 23, 3509 (2011)CrossRef
Yan, J. et al., J. Power Sources 195, 3041 (2010)CrossRef
Yang, S.R. et al., New J. Chem. 35, 369 (2011)
Yang, X. et al., Macromol. Rapid Comm. 26, 1736 (2005)CrossRef
Chiou, N.R. et al., Nature Nanotechnol. 2, 354 (2007)CrossRef
Li, D., Huang, J.X., Kaner, R.B., Acc. Chem. Res. 42, 135 (2009)CrossRef
Kang, E., Prog. Polym. Sci. 23, 277 (1998)CrossRef
Lee, Y.M. et al., Macromolecules 33, 7431 (2000)CrossRef
Zhang, D.C. et al., J. Power Sources 196, 5990 (2011)CrossRef
Xu, J. et al., J. Mater. Sci. Eng. B 151, 210 (2008)CrossRef
Chan, H.S.O. et al., Synth. Met. 22, 365 (1988)CrossRef
Cancado, L.G. et al., Nano Lett. 11, 3190 (2011)CrossRef
Izadi-Najafabadi, A. et al., ACS Nano 5, 811 (2011)CrossRef
Niu, C. et al., Appl. Phys. Lett. 70, 1480 (1997)CrossRef