Skip to main content
×
Home
    • Aa
    • Aa

Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors

  • E. F. C. Driessen (a1), F. R. Braakman (a1), E. M. Reiger (a2), S. N. Dorenbos (a2), V. Zwiller (a2) and M. J. A. de Dood (a1)...
Abstract

We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~5% at 488 nm to ~30% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~70% can be reached for a detector on Si or GaAs, without the need for an optical cavity.

We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~5% at 488 nm to ~30% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~70% can be reached for a detector on Si or GaAs, without the need for an optical cavity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors
      Available formats
      ×
Copyright
Corresponding author
mdedood@molphys.leidenuniv.nl
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G.N. Gol'tsman , O. Okunev , G. Chulkova , A. Lipatov , A. Semenov , K. Smirnov , B.M. Voronov , A. Dzardanov , C. Williams , R.R. Sobolewski , Appl. Phys. Lett. 79, 705 (2001)

G.N. Gol'tsman , O. Minaeva , A. Korneev , M. Tarkhov , I. Rubtsova , A. Divochiy , I. Milostnaya , G. Chulkova , N. Kaurova , B.M. Voronov et al., IEEE Trans. Appl. Supercond. 17, 246 (2007)

H. Takesue , S.W. Nam , Q. Zhang , R.H. Hadfield , T. Honjo , K. Tamaki , Y. Yamamoto , Nat. Photon. 1, 343 (2007)

A. Semenov , A. Engel , K. Il'in , G.N. Gol'tsman , M. Siegel , H.-W. Hübers , Eur. Phys. J. Appl. Phys. 21, 171 (2003)

A.J. Kerman , E.A. Dauler , W.E. Keicher , J.K.W. Yang , K.K. Berggren , G.N. Gol'tsman , B.M. Voronov , Appl. Phys. Lett. 88, 111 (2006)

M. Ejrnaes , R. Cristiano , O. Quaranta , S. Pagano , A. Gaggero , F. Mattioli , R. Leoni , B. Voronov , G.N. Gol'tsman , Appl. Phys. Lett. 91, 262509 (2007)

A. Engel , A. Semenov , H.-W. Hübers , K. Il'in , M. Siegel , Physica C 444, 12 (2006)

M. Bell , N. Kaurova , A. Divochiy , G.N. Gol'tsman , J. Bird , A. Sergeev , A.A. Verevkin , IEEE Trans. Appl. Supercond. 17, 267 (2007)

K.E. Kornelsen , M. Dressel , J.E. Eldridge , M.J. Brett , K.L. Westra , Phys. Rev. B 44, 11882 (1991)

V. Anant , A.J. Kerman , E.A. Dauler , J.K.W. Yang , K.M. Rosfjord , K.K. Berggren , Opt. Expr. 16, 10750 (2008)

S.N. Dorenbos , E. Reiger , N. Akopian , U. Perinetti , V. Zwiller , T. Zijlstra , T.M. Klapwijk , Appl. Phys. Lett. 93, 161102 (2008)

K.M. Rosfjord , J.K.W. Yang , E.A. Dauler , A.J. Kerman , V. Anant , B.M. Voronov , G.N. Gol'tsman , K.K. Berggren , Opt. Expr. 14, 527 (2006)

G.R. Bird , M. Parrish , J. Opt. Soc. Am. 50, 886 (1960)

D.E. Aspnes , Am. J. Phys. 50, 704 (1982)

J.M. Pitarke , F.J. Garcia-Vidal , Phys. Rev. B 57, 15261 (1998)

M.G. Moharam , E.B. Grann , D.A. Pommet , T.K. Gaylord , J. Opt. Soc. Am. A 12, 1068 (1995)

K. Tanabe , H. Asano , Y. Katoh , O. Michikami , J. Appl. Phys. 63, 1733 (1988)

W.-J. Lee , J.-E. Kim , H.Y. Park , S. Park , M.-S. Kim , J.T. Kim , J.J. Ju , J. Appl. Phys. 103, 073713 (2008)

A. Verevkin , A. Pearlman , W. Slysz , J. Zhang , M. Currie , A. Korneev , G. Chulkova , O. Okunev , P. Kouminov , K. Smirnov et al., J. Mod. Opt. 51, 1447 (2004)

A. Jukna , J. Kitaygorsky , D. Pan , A.S. Cross , A.J. Pearlman , I. Komissarov , O. Okunev , K. Smirnov , A. Korneev , G. Chulkova et al., Acta Phys. Pol. A 113, 955 (2008)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The European Physical Journal - Applied Physics
  • ISSN: 1286-0042
  • EISSN: 1286-0050
  • URL: /core/journals/the-european-physical-journal-applied-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 18 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.