Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-15T05:43:45.173Z Has data issue: false hasContentIssue false

In situ characterisation of non linear capacitors

Published online by Cambridge University Press:  15 May 2001

L. Laudebat
Affiliation:
Laboratoire de Génie Électrique de Toulouse - Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
V. Bley
Affiliation:
Laboratoire de Génie Électrique de Toulouse - Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
T. Lebey*
Affiliation:
Laboratoire de Génie Électrique de Toulouse - Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
H. Schneider
Affiliation:
Laboratoire d'Électrotechnique et d'Électronique Industrielle INP-ENSEIIHT, 2 rue Camichel, 31062 Toulouse Cedex, France
P. Tounsi
Affiliation:
Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
Get access

Abstract

Multilayers ceramic capacitors (MLCC) presenting non linear behaviours of their C(V) characteristics may have interesting applications in power electronics. Most of them have already been described. Nevertheless, the choice of a particular type instead of another one is all the more so difficult since, on one hand the physical mechanisms able to explain this behaviour is far from being understood. On the other hand, C(V) characteristics are in general obtained for low voltage values different from the ones they are going to be involved in. In this paper, direct in situ characterisations of different BaTiO3 based capacitors commercially available are achieved. The role of the capacitors' type (X7R,Z5U), of the temperature and of the voltage waveform (and more particularly its polarity) is demonstrated. Temperature values up to 200 °C are measured during normal operations in a RCD dissipative snubber without any alterations of the C(V) characteristics. All these results are discussed as regards the main physical properties of the constitutive materials in order to reach an optimisation of their use through an appropriate dimensioning.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

C.G. Steyn, J.D. Van Wyk, IEEE Trans. Ind. Appl. IA-22, 471 (1986).
Steyn, C.G., Van Wyk, J.D., IEEE Trans. Ind. Appl. 25, 226 (1989). CrossRef
Friegen, G., Van Wyk, J.D., IEEE Trans. Power Electron. 7, 425 (1992). CrossRef
N. Aouda, Les condensateurs en électronique de puissance, Ph.D. dissertation, Chap. 4, 1995, Toulouse - France.
Harada, K., Katsuki, A., Fujiwara, M., Nakajima, H., Matsushita, H., IEEE Trans. Power Electron. 8, 404 (1993). CrossRef
Smolenskii, G.A., Soviet Phys. Solid State 1, 147 (1959).
Campbell, C.K., Van Wyk, J.D., Holm, M.F.K., IEEE Trans. Components Packaging and Manufacturing Technol. - Part A. 18, 226 (1995). CrossRef
N. Benhamla, Electroceramics IV, 4th International Conference on Electronic Ceramics and Application, Germany, Sept 1994, p. 101.
Little, E.A., Phys. Rev. 98, 978 (1995). CrossRef
W. Jackson, The insulation of electrical equipment (Chapman and Hall Ltd, London, 1954), p. 75.
Love, G.R., J. Am. Ceram. Soc. 73, 323 (1990). CrossRef