Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T01:20:08.176Z Has data issue: false hasContentIssue false

Influence of inert gas addition on electric breakdown using dielectric barrier discharge in oxygen

Published online by Cambridge University Press:  11 July 2014

Lin-Sheng Wei*
Affiliation:
School of Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
Ding-Kun Yuan
Affiliation:
School of Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
Ya-Fang Zhang
Affiliation:
School of Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
Zhao-Ji Hu
Affiliation:
School of Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
Guo-Pan Dong
Affiliation:
School of Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
Get access

Abstract

This paper studies the influence of inert gas additions He, Ar, Kr and Xe on breakdown voltage within dielectric barrier discharge reactor with oxygen feed gas. The density-normalized effective ionization coefficients αeff/N are calculated for inert gas/O2 mixtures, the critical reduced field E/Ncr is obtained where the electron ionization exactly balances the attachment. Adding inert gases would lead to the decreasing critical reduced field strength E/Ncr due to the enhancement of effective ionization coefficient. In addition, inert gas additions have shown to reduce the breakdown voltage. Moreover the numerical breakdown voltage values and the experimental data are plotted for the sake of comparison and results show that calculated results are in agreement with the experimental values. Parametric study offers substantial insight in plasma physics, as well as in ozone generation applications.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mikoviny, T., Kocan, M., Matejcik, S., Mason, N.J., Skalny, J.D., J. Phys. D 37, 64 (2004)CrossRef
Skalny, J.D., Mikoviny, T., Mason, N.J., Sobek, V., Ozone: Sci. Eng. 24, 29 (2002)CrossRef
Mason, N.J., Skalny, J.D., Hadj-Ziane, S., Czech. J. Phys. 52, 85 (2002)CrossRef
Skalny, J.D., Mason, N.J., Ozone: Sci. Eng. 24, 329 (2002)CrossRef
Wei, L.S., Yuan, D.K., Zhang, Y.F., Hu, Z.J., Dong, G.P., Ozone: Sci. Eng. 35, 448 (2013)CrossRef
Novoselov, Y.N., Ryzhov, V., Suslov, A., Tech. Phys. 44, 44 (1999)CrossRef
Wei, L.S., Hu, Z.J., Zhang, Y.F., Yang, C., Ozone: Sci. Eng. 32, 444 (2010)CrossRef
Wei, L.S., Yuan, D.K., Zhang, Y.F., Hu, Z.J., Tan, Z.H., Dong, G.P., Tao, S.Q., Eur. Phys. J. D 68, 17 (2014)CrossRef
Sung, T.L., Teii, S., Liu, C.M., Hsiao, R.C., Chen, P.C., Wu, Y.H., Yang, C.K., Teii, K., Ono, S., Ebihara, K., Vacuum 90, 65 (2013)CrossRef
Kogelschatz, U., IEEE Trans. Plasma Sci. 30, 1400 (2002)CrossRef
Loeb, L.B., Meek, J.M., J. Appl. Phys. 11, 438 (1940)CrossRef
Georghiou, G.E., Papadakis, A.P., Morrow, R., Metaxas, A.C., J. Phys. D 38, R303 (2005)CrossRef
Chen, H.L., Lee, H.M., Chen, S.H., Wei, T.C., Chang, M.B., Plasma Source. Sci. Technol. 19, 065009 (2010)CrossRef
Chen, H.L., Lee, H.M., Chen, S.H., Wei, T.C., Chang, M.B., Plasma Source. Sci. Technol. 19, 055009 (2010)CrossRef
Meeks, J.M., Graggs, J.D., Electric Breakdown of Gases (Wiley, New York, 1978)Google Scholar
Ingold, J.H., Phys. Rev. A 40, 3855 (1989)CrossRef
Morgan, W.L., Penetrante, B.M., Comput. Phys. Commun. 58, 127 (1990)CrossRef
Holstein, T., Phys. Rev. 70, 367 (1946)CrossRef
Pinheiro, M.J., Loureiro, J., J. Phys. D 35, 3077 (2002)CrossRef
Hagelaar, G.J.M., Pitchford, L.C., Plasma Source. Sci. Technol. 14, 722 (2005)CrossRef
de Urquijo, J., Basurto, E., Hernandez-Avila, J.L., J. Phys. D 36, 3132 (2003)CrossRef
Deng, Y.K., Xiao, D.M., Euro. Phys. J. Appl. Phys. 57, 20801 (2012)CrossRef