Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-06T16:09:56.081Z Has data issue: false hasContentIssue false

Interaction of oxygen with submonolayer beryllium films on Mo(1 1 2)

Published online by Cambridge University Press:  18 November 2014

Alexei G. Fedorus*
Affiliation:
Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03680, Ukraine
Alexander A. Mitryaev
Affiliation:
Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03680, Ukraine
Anton G. Naumovets
Affiliation:
Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03680, Ukraine
Get access

Abstract

Interaction of oxygen with the Mo(1 1 2) surface precovered by submonolayer beryllium films with various coverage degrees (θBe < 1) has been investigated by Auger electron spectroscopy, LEED and contact potential difference techniques. We have studied the effect of Be coverage degree on the oxygen adsorption kinetics, atomic structure and electronic properties of the O/Be/Mo(1 1 2) system. Contrary to the case of full-monolayer Be precoverage (θBe = 1), beryllium submonolayers can speed up the initial adsorption kinetics of oxygen by a factor of 10. The high sticking coefficient of oxygen on the Be/Mo(1 1 2) surface at θBe < 1 can be explained by the existence of areas on Mo(1 1 2) that are free of Be and provide fast oxygen adsorption, with O adatoms migrating further to the areas covered with Be (the spillover effect). The creation of beryllium oxide even on limited surface areas substantially decreases the oxygen sticking coefficient. This effect may originate from the surface deformation due to a structural misfit between the Be/O layer and the substrate. The coadsorbed Be/O layers with θBe < 1 modify the work function to values between those specific of the O/Be/Mo(1 1 2) systems with θBe = 0 and 1, which complies with the heterogeneous adlayer model.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fedorus, A.G., Mitryaev, A.A., Naumovets, A.G., Eur. Phys. J. B 86, 477 (2013)CrossRef
Fukui, K., Aruga, T., Iwasawa, Ya., Surf. Sci. 281, 241 (1993)CrossRef
Ptushinskii, Yu.G., Low Temp. Phys. 30, 1 (2004)CrossRef
Kolasinski, K.W., Surface Science: Foundations of Catalysis and Nanoscience, 2nd edn. (John Wiley & Sons Ltd, Chichester, 2008)Google Scholar
Fowler, D.E., Blakely, J.M., Surf. Sci. 148, 265 (1984)CrossRef
Fedorus, A.G., Mitryaev, A.A., Naumovets, A.G., Surf. Sci. 606, 580 (2012)CrossRef
Fedorus, A.G., Mitryaev, A.A., Naumovets, A.G., Eur. Phys. J. B 85, 408 (2012)CrossRef
Fedorus, A.G., Gributa, A.A., Kotlyarova, I.A., Surf. Sci. 317, 170 (1994)CrossRef
LeJeune, E.J. Jr., Dixon, R.D., J. Appl. Phys. 43, 1998 (1972)CrossRef
Schroeder, T., Zegenhagen, J., Magg, N., Immaraporn, B., Freund, H.-J., Surf. Sci. 552, 85 (2004)CrossRef
Kiejna, A., Nieminen, R.M., J. Chem. Phys. 122, 1 (2005)CrossRef
Dooley, G.J. III, Haas, T.W., J. Vac. Sci. Technol. 7, 49 (1970)CrossRef
Coulson, C.A., Valence (Oxford University Press, 1961), Chap. 3Google Scholar
Somorjai, G.A., Farrell, H.H., Adv. Chem. Phys. 20: Low-Energy Electron Diffraction, edited by Prigogine, I., Rice, S.A. (Wiley-Interscience, New York, 1971)Google Scholar
Santra, A.K., Min, B.K., Goodman, D.W., Surf. Sci. 513, L441 (2002)CrossRef
Shewmon, P.G., Surf. Sci. 6, 293 (1967)CrossRef
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P., Prog. Mater. Sci. 61, 1 (2014)CrossRef
Conner, W.C., Falconer, J.L., Chem. Rev. 95, 759 (1995)CrossRef
Ibach, H., Surf. Sci. Rep. 29, 193 (1997)CrossRef
Shchukin, V.A., Bimberg, D., Rev. Mod. Phys. 71, 1125 (1999)CrossRef