Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T23:35:45.864Z Has data issue: false hasContentIssue false

Microhardness variation and related microstructure in Al–Cu alloys prepared by HF induction melting and RF sputtering

Published online by Cambridge University Press:  17 February 2009

N. Boukhris
Affiliation:
LM2S, Physics department, Faculty of Science, Badji-Mokhtar-Annaba University, 23200 Annaba, Algeria
S. Lallouche
Affiliation:
LM2S, Physics department, Faculty of Science, Badji-Mokhtar-Annaba University, 23200 Annaba, Algeria
M. Y. Debili*
Affiliation:
LM2S, Physics department, Faculty of Science, Badji-Mokhtar-Annaba University, 23200 Annaba, Algeria
M. Draissia
Affiliation:
LM2S, Physics department, Faculty of Science, Badji-Mokhtar-Annaba University, 23200 Annaba, Algeria
Get access

Abstract

The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al–Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable $\theta '$ phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al$_{1-x}$Cux (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al–Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al2Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al–Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M.F. Ashby, D.R.H. Jones, Matériaux. Microstructure et mise en œuvre, Vol. 2 (Dunod, 1991), p. 97
Hall, O., Proc. Phys. Soc. Lond. 643, 747 (1951) CrossRef
Petch, N.J., J. Iron Steel Inst. Lond. 173, 25 (1953)
Arnell, R.D., Bates, R.I., Vacuum 43, 105 (1992) CrossRef
Sanchette, F., Tran Huu Loï, C. Frantz, Surf. Coat. Technol. 74-75, 903 (1995) CrossRef
Uesugi, T., Takigawa, Y., Higashi, K., Mater. Sci. Forum 561-565, 997 (2007) CrossRef
E.L. Rooy, Metals Handbook, Vol. 15 (ASM International, Materials Park, Ohio, 1988), p. 743
Spinelli, J.E., Rosa, D.M., Ferreira, I.L., Garcia, A., Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process 383, 271 (2004)
Bradley, A.J., Jones, P., J. Inst. Met. 51, 131 (1933)
Kattamis, T.Z., Coughlin, J.C., Flemings, M.C., Trans. Metall. Soc. AIME 239, 1504 (1967)
J.W. Cahn, G. Kalonji, in Proc. Int. Conf. Solid-Solid Phase Transformations, Carnegie-Mellon University, Pittsburgh, PA (1981)
Silcock, J.M., Heal, T.J., Hardy, H.I.C., J. Inst. Met. 82, 239 (1954)
Laird, C., Aaronson, H.I., Trans. Metall. Soc. AIME 242, 1393 (1968)
L. Arnberg, L. Backerud, G. Chai, American Foundrymen's Society, Vol. 3 (Des Plaines, USA, 1996), pp. 95–96
Suyitno, D.G. Eskin, V.I. Savran, L. Katgerman, Metall. Mater. Trans. A 35, 3551 (2004) CrossRef
Takeda, M., Maeda, Y., Yoshida, A., Yabuta, K., Konuma, S., Endo, T., Scripta Mater. 41, 643 (1999) CrossRef
L.F. Mondolfo, Aluminium alloys: Structure and properties (Butterworth, London, 1976), pp. 389-391
De Mol van, J.L. Otterloo, D. Bagnoli, J.Th.M. De Hosson, Acta Metall. Mater. 43, 2649 (1995) CrossRef
Hall, E.O., Proc. Laser Phys. Soc. B 64, 742 (1951)
Hegge, H.J., De Hosson, J.Th.M., Acta Metall. Mater. 38, 2471 (1990) CrossRef
Noordhuis, J., De Hosson, J.Th.M., Acta Metall. Mater. 41, 1989 (1993) CrossRef
Zhang, Y., Mei-Ling Le, I.e, H. Tan, Q. Jing, Y. Li, Intermetallics 12, 1279 (2004) CrossRef
Tan, H., Zhang, Y., Ma, D., Feng, Y.P., Li, Y., Acta Mater. 51, 4551 (2003) CrossRef
Draissia, M., Debili, M.Y., Central Eur. J. Phys. 3, 395 (2005)
Draissia, M., Debili, M.Y., J. Cryst. Growth 270, 348 (2004) CrossRef
A. Guinier, Théorie et Technique de la Radiocristallographie, 3rd edn. (Dunod, Paris, 1964), p. 461