Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T17:14:31.527Z Has data issue: false hasContentIssue false

Optimisation of a corrugation-pitch-modulated DFB laser structure with inhomogeneous coupling coefficient for stable single longitudinal mode operation

Published online by Cambridge University Press:  30 October 2009

J. B. M. Boavida*
Affiliation:
Optical Communications Group, Instituto de Telecomunicações, Av. Rovisco Pais, 1049–001 Lisboa, Portugal
J. A. P. Morgado
Affiliation:
Optical Communications Group, Instituto de Telecomunicações, Av. Rovisco Pais, 1049–001 Lisboa, Portugal 
Portuguese Air Force Academy, Granja do Marquês, 2715-021 Sintra, Portugal
C. A. F. Fernandes
Affiliation:
Optical Communications Group, Instituto de Telecomunicações, Av. Rovisco Pais, 1049–001 Lisboa, Portugal
Get access

Abstract

This paper shows that a suitable design of a corrugation-pitch-modulated (CPM) distributed-coupling-coefficient (DCC) distributed feedback (DFB) laser structure can strongly improve the mode selectivity $(\mathfrak{G})$ and the flatness $(\mathfrak{F})$ of DFB laser structures in order to ensure the required criteria for single longitudinal mode operation ($\mathfrak{G}$ 0.25 and $\mathfrak{F}$ 0.05), through an extended range of current injection. It is shown that a symmetric structure should be used in order to accomplish the requirements imposed by the modern optical communication systems. Photon and carrier rate equations have been used in order to evaluate the performance of the proposed laser structure in the above-threshold regime. The variations of $\mathfrak{G}$ , $\mathfrak{F}$ , the lasing wavelength, the emitted power (P) and the side-mode-suppression-ratio (SMSR) with the current injection (I) have been evaluated. For I = 5 Ith, where Ith is the laser threshold current, substantial improvements in $\mathfrak{G}$ (3.8 times better), in $\mathfrak{F}$ (2 times better), in P (15% higher) and in the SMSR (about 3.4 dB higher) are achieved in the proposed CPM-DCC-DFB laser when compared to an optimised CPM-DCC-DFB laser referred elsewhere. The improvements are even better when compared to the standard QWS-DFB laser.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

G. Morthier, P. Vankwikelberge, Handbook of Distributed Feedback Laser Diodes (Artech House, Norwood, 1997)
G. Agrawal, N. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993)
H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (J. Wiley & Sons, Chichester, 2003)
Fessant, T., IEE Proc. Optoelectron. – Pt. J 144, 365 (1997) CrossRef
Lo, B., Ghafouri-Shiraz, H., IEEE/OSA J. Lightw. Technol. 13, 200 (1995) CrossRef
Nilsson, S., Kjellberg, T., Klinga, T., Wallin, J., Streubel, K., Schatz, R., IEEE Photon. Technol. Lett. 5, 1128 (1993) CrossRef
Fessant, T., Appl. Phys. B 67, 769 (1998) CrossRef
Ogita, S., Kotaki, Y., Matsuda, M., Kuwahara, Y., Ishikawa, H., IEEE/OSA J. Lightw. Technol. 25, 629 (1989)
Dai, Y., Yao, J., IEEE J. Quant. Electron. 44, 938 (2008) CrossRef
Kogelnik, H., Shank, C., J. Appl. Phys. 43, 2327 (1972) CrossRef
Kapon, E., Hardy, A., Katzir, A., IEEE J. Quant. Electron. 18, 66 (1982) CrossRef
David, K., Buus, J., Baets, R.G., IEEE J. Quant. Electron. 28, 427 (1992) CrossRef
T. Shuara, Semiconductor Laser Fundamentals (Marcel Dekker, New York, 2004)
M. Fukuda, Optical Semiconducor Devices, 1st edn. (John Wiley, New York, 1998)