Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-21T07:12:50.159Z Has data issue: false hasContentIssue false

Parametric study of electric arcs in aeronautical condition of pressure

Published online by Cambridge University Press:  12 August 2014

Romaric Landfried*
Affiliation:
Laboratoire de Génie Electrique de Paris, Supelec – CNRS – Universités Paris VI & Paris XI, 11 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
Laurent Savi
Affiliation:
Laboratoire de Génie Electrique de Paris, Supelec – CNRS – Universités Paris VI & Paris XI, 11 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
Thierry Leblanc
Affiliation:
Laboratoire de Génie Electrique de Paris, Supelec – CNRS – Universités Paris VI & Paris XI, 11 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
Philippe Teste
Affiliation:
Laboratoire de Génie Electrique de Paris, Supelec – CNRS – Universités Paris VI & Paris XI, 11 rue Joliot-Curie, 91190 Gif-sur-Yvette, France
Get access

Abstract

This work deals with the characterization of DC electric arcs in aeronautical conditions of pressure (104 Pa–105 Pa). Characteristics of electric arcs such as the mean electric field in the arc column, the anode and cathode voltage drops, the length for which the arc extinguishes naturally and the mean energy dissipated per arc have been measured for three current values: 7, 70 and 300 A. The decrease of pressure leads to an increase in the arc length which can be two times longer in pressure conditions reached during a flight than in atmospheric pressure conditions. This is correlated with the variation of the mean electric field with pressure. Consequently, the energy dissipated per arc is also amplified.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Land, H.B., IEEE Trans. Ind. Appl. 44, 430 (2008)CrossRef
Stueber, T.J., Hammoud, A., Stavnes, M.W., Hrovat, K., Conference record of the 1994 IEEE International Symposium on Electral Insulation, 1994, pp. 473476
Dricot, F., Reher, H.J., IEEE Trans. Dielectr. Electr. Insul. 1, 896 (1994)CrossRef
Koliatène, F., Contribution à l’étude de l’existence des décharges dans les systèmes de l’avionique, Thesis, University Paul Sabatier, Toulouse 3, France, 2009Google Scholar
Andrea, J., Génération, modélisation et détection des défauts d’arcs électriques : application aux systèmes embarqués aéronautiques, Thesis, University of Nancy Lorraine, 2011Google Scholar
Koenig, D., Hoertz, F., Fugel, T., Wang, Y., Fault Arc Propagation on Aircraft Wires Under Different Environnemental Pressure Conditions (ISDEIV, Yalta, 2004)Google Scholar
El Bayda, H., Etude du transfert d’énergie entre un arc de court-circuit et son envirronnement : application à l’arc tracking (Université Paul Sabatier, Toulouse, 2012)Google Scholar
Phillips, V.E., Mitchel, W.P., AIEE Transactions 63, 944 (1944)
Quill, J.S., Rader, L.T., AIEE Transactions 63, 883 (1944)
Klonowski, T., Andlauer, R., Leblanc, T., Teste, Ph., IEEE Trans. Veh. Technol. 56, 2017 (2007)CrossRef
Schoepf, J., Electrical Contacts in the Automotive 42 VDC Power Net (ICEC, Zurich, 2002)Google Scholar
Behrens, V., Honig, T., Kraus, A., Lutz, O., Switching Behaviour of Silver Based Contact Materials in 42 VDC Applications (ICEC, Zurich, 2002)Google Scholar
Montoya, M., McCalmont, S., Katzir, G., Fuks, F., Earle, J., Fresquez, A., Gonzalez, S., Granata, J., Johnson, J., Differentiating series and parallel photovoltaic arc faults, in 38th IEEE photovoltaic specialist conference, Austin, Texas, USA, 2012Google Scholar
El Bayda, H., IEEE Trans. Dielectr. Electr. Insul. 20, 19 (2013)CrossRef
Wang, L., Sun, Q., Meng, Z., The characteristic of DC arc fault current, in European conference of power electronics and applications, Lille, France, 2013Google Scholar
Klonowski, T., Andlauer, R., Leblanc, T., Teste, Ph., Eur. Phys. J. Appl. Phys. 41, 251 (2008)
Slade, P., Electrical Contacts (Marcel Dekker Inc., New York, USA, 1999)Google Scholar
Rieder, W., Zeitschrift für Physik 146, 629 (1956)CrossRef
Novak, J.P., Ellena, G., J. Phys. D: Appl. Phys. 20, 462 (1987)CrossRef
Hingana, H., Contribution à l’étude des propriétés des plasmas à deux températures : application à l’argon et l’air, Thesis, University Paul Sabatier, Toulouse 3, France, 2011Google Scholar
Von Engel, A., Zhu, S.L., J. Phys. D: Appl. Phys. 14, 2225 (1981)
Gray, E.W., J. Appl. Phys. 43, 4573 (1972)CrossRef
Boddy, P.J., Utsumi, T., J. Appl. Phys. 42, 3369 (1971)CrossRef
Matsumura, T., Henmi, R., Kito, Y., Yokomizu, Y., J. Phys. D: Appl. Phys. 29, 1260 (1996)
Teste, Ph., Andlauer, R., Leblanc, T., Chabrerie, J.-P., Gouega, A.M., Eur. Phys. J. Appl. Phys. 11, 111 (2000)CrossRef
Marotta, A., Borisyuk, V.N., Sharakhovsky, L.I., J. Phys. D: Appl. Phys. 30, 2018 (1997)
Rondeel, W.G.J., J. Phys. D: Appl. Phys. 6, 1705 (1973)CrossRef
Kessaev, I., Cathode Processes in Electric Arcs, vol. 9 (Nauka press, Moscow, Russia, 1978), pp. 11461154Google Scholar
Kimblin, C.W., J. Appl. Phys. 44, 3074 (1973)CrossRef
Holmes, R., Agarwal, M.S., J.Phys. D: Appl. Phys. 17, 757 (1984)
Andlauer, R., Leblanc, T., Faure, F., Meyer, R., Ph. Teste, , Klonowski, T., High intensity contact opening under DC voltage, in 50th IEEE Holm conference, Seattle, USA, 2004Google Scholar