Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T06:22:41.943Z Has data issue: false hasContentIssue false

Quantitative analysis of low-frequency current oscillationin semi-insulating GaAs

Published online by Cambridge University Press:  15 July 2004

M. Kiyama*
Affiliation:
Advanced Materials R & D Laboratories, Sumitomo Electric Industries, 1-1-1 Koya-kita,Itami, Hyogo 664-0016, Japan Division of Information and Production Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
M. Yamada
Affiliation:
Division of Information and Production Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan Department of Electronics and Information Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
M. Tatsumi
Affiliation:
Advanced Materials R & D Laboratories, Sumitomo Electric Industries, 1-1-1 Koya-kita,Itami, Hyogo 664-0016, Japan
Get access

Abstract

Low-frequency current oscillation (LFO) in semi-insulating (SI) GaAs has been precisely measured with the guard-ring method using three electrodes, in which the electric field is well defined and controlled, and furthermore the surface leakage current becomes low. It is found from the precise measurements of I-V characteristics, waveforms and frequencies of LFO that the LFO phenomenon is well explained by the electric field-enhanced electron capture model taking into account the ionized EL2 concentration. The temperature dependences of LFO are also quantitatively explained by the model.


Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D. J. Miller, M. Bujatti, IEEE Trans. Electron Devices ED-34, 1239 (1987)
Abdala, M. A., Jones, B. K., Solid-State Electron. 36, 237 (1993) CrossRef
F. Piazza P. C. M. Christianen, J. C. Maan, Phys. Rev. $\mathrm B$ 55, 15591 (1997)
Kaminska, M., Parsey, J. M., Lagowski, J., Gatos, H. C., J. Appl. Phys. 41, 989 (1982)
Vorobev, Y. V., Tolpygo, E. I., Sheinkman, M. K., Phys. Stat. Sol. B 123, 295 (1984) CrossRef
Piazza, F., Christianen, P. C. M., Maan, J. C., Appl. Phys. Lett. 69, 1909 (1996) CrossRef
Sacks, H. K., Milnes, A. G., Int. J. Electron. 30, 49 (1971) CrossRef
Maracas, G. N., Johnson, D. A., Goronkin, H., Appl. Phys. Lett. 46, 305 (1985) CrossRef
Obokata, T., Obokata, T., Kikuta, T., Orito, F., Terashima, K., Matsumura, T., Fukuda, T., Jpn J. Appl. Phys. 23, L602 (1984) CrossRef
Look, D. C., Fang, Z. Q., Solid-State Electron. 43, 1317 (1999) CrossRef
Martin, G. M., Farges, J. P., Jacob, G., Hallais, J. P., Poiblaud, G., J. Appl. Phys. 51, 2840 (1980) CrossRef