Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-20T14:28:16.386Z Has data issue: false hasContentIssue false

Study of the defects in oxygen implanted silicon subjected to neutron irradiation and high pressure annealing

Published online by Cambridge University Press:  15 July 2004

W. Jung*
Affiliation:
Institute of Electron Technology, 02-668 Warsaw, Poland
M. Kaniewska
Affiliation:
Institute of Electron Technology, 02-668 Warsaw, Poland
A. Misiuk
Affiliation:
Institute of Electron Technology, 02-668 Warsaw, Poland
C. A. Londos
Affiliation:
The University of Athens, Solid State Physics Section, Panepistimiopolis Zografos 15784, Greece
Get access

Abstract

This paper reports on capacitance measurements on Czochralski-grown and float-zone silicon subjected to oxygen implantation, subsequent neutron irradiation and finally high pressure thermal anneals. The purpose of this work was the study of the effect of irradiation on the formation of thermal donors in silicon. The observed changes in the C-V characteristic curves and profiles are discussed. We found that oxygen-ion implantation followed by neutron irradiation results in shallow and deep level acceptor-like defects formation. Prolonged heat treatment leads to thermal donor generation as usual in Cz-Si annealed at 450 °C. The most striking result of the study is finding that high pressure thermal anneals result in extra donor formation. The effects mentioned above may lead to changes in the type of conductivity depending on oxygen content in the material, hydrostatic pressure and an extent of damage caused by the irradiation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

V. V. Emtsev, B. A. Andreev, A. Misiuk, W. Jung, K. Schmalz, Appl. Phys. Lett. 71 (1997) 264
I. V. Antonova, V. F. Stas, E. P. Neustroev, V. P. Popov, L. S. Smirnov, Semicond, 34 (2000) 162
W. Jung, I. V. Antonova, V. P. Popov, A. Misiuk, J. Jun, Proc. IMAPS, (1999) 191
Londos, C. A., Fytros, L. G., Georgiou, G. J., Defect and Diffusion Forum, Vols 171–172, 1 (1999)
Lee, V.-H., Gerasimenko, N. N., Corbett, J. W., Phys. Rev. B 14, 4506 (1976) CrossRef
McQuaid, S. A., Binns, M. J., Lomdos, C. A., Tucker, J. H., Brown, A. R., Newmann, R. C., J. Appl. Phys. 77, 1427 (1995) CrossRef
Bollman, J., Klose, H. A., Solid State Phenom. 687, 461 (1989) CrossRef
Raineri, V., Fallica, G., Libertino, S., J. Appl Phys. 79, 9012 (1996) CrossRef
Seager, C. H., Myers, S. M., Anderson, R. A., Warren, W. L., Follstaedt, D. M., Phys.Rev. B 50, 2458 (1994) CrossRef
Giri, P. R., Mohapatra, Y. N., Semicond. Sci. Technol. 15, 985 (2000) CrossRef
Giri, P. R., Mohapatra, Y. N., J. Appl Phys. 84, 1901 (1998) CrossRef
Kaniewska, M., Antonova, I. V., Popov, V. P., Phys. Stat. Solidi c 0, 715 (2003) CrossRef
Brown, D. M., Connery, R. C., Gray, P. V., J. Electrochem. Soc. 122, 121 (1975) CrossRef
Van Gelder, W., Nicollian, E. H., J. Electrochem. Soc. 118, 138 (1971) CrossRef
Bruni, M., Bisero, D., Tonini, R., Ottaviani, G., Queirolo, G., Bottini, R., Phys. Rev. B 49, 5291 (1994) CrossRef