Hostname: page-component-65f69f4695-kztdx Total loading time: 0 Render date: 2025-06-30T01:45:28.975Z Has data issue: false hasContentIssue false

Virtual cathode apparition in Pt/a-Si:H Schottky barrierunder illumination and applied voltage

Published online by Cambridge University Press:  06 May 2008

A. Boukra*
Affiliation:
Département d'Électronique, Faculté des Sciences et Sciences de l'Ingénieur, Université de Mostaganem, 27000 Mostaganem, Algeria
J. D. Sib
Affiliation:
Département de Physique, Université d'Oran, Es-Sénia 31100, Algeria
Get access

Abstract

The behavior of illuminated Pt/a-Si:H Schottky barrier has been studied by numerical calculations. The electric field, the electrons and holes currents, the charge space and the recombination rate where calculated as function of the position. The photocurrent, when the front of the barrier is illuminated by different wavelengths under lower reverse applied voltage, tends towards saturation. By comparing the number of collected carriers to the incoming photons, we remark that the collection of photogenerated carriers is partial for long wavelengths (λ ≥ 600 nm), in this case the collection efficiency is determined by the recombination in the bulk, and total when the short wavelengths (λ < 600 nm) are used and the recombination in the front layer seems to be an important carrier loss mechanism. This is mainly the consequence of the virtual cathode apparition that behaves against the carrier collection. This cathode moves to back contact and tends to disappear with increasing the reverse bias voltage.

Keywords

Information

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Hack, M., Shur, M., J. Appl. Phy. 58, 997 (1985) CrossRef
McElheny, P.J., Arch, J., Lin, H.S., Fonash, S.J., J. Appl. Phys. 64, 1254 (1988) CrossRef
Smole, F., Furlan, J., J. Appl. Phy. 72, 5964 (1992) CrossRef
Fantoni, A., Vieira, M., Martins, R., Math. Comput. Simul. 49, 381 (1999) CrossRef
Rubinelli, F.A., Hou, J.Y., Fonash, S.J., J. Appl. Phys. 73, 2548 (1993) CrossRef
Rubinelli, F.A., Liu, H., Wronski, C.R., Phil. Mag. B 74, 407 (1996) CrossRef
Chatterjee, P., J. Appl. Phys. 75, 1094 (1994) CrossRef
Damon-Lacoste, J., Roca, P. i Cabarrocas, P. Chatterjee, Y. Veschetti, A.S. Gudovskikh, J.P. Kleider, P.J. Ribeyron, J. Non-Cryst. Sol. 352, 1928 (2006) CrossRef
Kusian, W., Pfleiderer, H., Bullemer, B., Solar Cells 22, 239 (1987) CrossRef
Gauthier, M., Phil. Mag. B 1, 145 (1997) CrossRef
McElheny, P.J., Chatterjee, P., Fonash, S.J., J. Appl. Phys. 69, 7674 (1991) CrossRef
Rowlands, S.F., Livingstone, J., Lund, C.P., Solar Energy 76, 301 (2004) CrossRef
Vanecek, M., Kochka, J., Stuchlik, J., Kozisek, Z., Stika, O., Triska, A., Solar Energy Mat. 8, 411 (1983) CrossRef
Simmons, J.G., Taylor, G.W., J. Non-Cryst. Sol. 8-10, 947 (1972) CrossRef
Debnath, M., Chatterjee, P., J. Non-Cryst. Sol. 181, 301 (1995) CrossRef
Sib, J.D., Boukra, A., Bouizem, Y., Chahed, L., Solid State Comm. 108, 813 (1998) CrossRef
Qureshi, S., Perez-Mendez, V., Kaplan, S.N., Fujieda, I., Cho, G., Street, R.A., IEEE Trans. Nucl. Sci. 36, 194 (1989) CrossRef
Gautier, M., J. Appl. Phys. 91, 2423 (2002) CrossRef
MacKenzie, K.D., Lecomber, P.G., Spear, W.E., Phil. Mag. B 46, 377 (1982) CrossRef
Balon, F., Shannon, J.M., Solid State Electron. 50, 378 (2006) CrossRef
Şahin, M., Durmus, H., Kaplan, R., Appl. Surf. Sci. 252, 6269 (2006) CrossRef