Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T02:03:04.480Z Has data issue: false hasContentIssue false

Key Events in the Ecological Radiation of the Ostracoda

Published online by Cambridge University Press:  21 July 2017

David J. Horne*
Affiliation:
Zoology Department, The Natural History Museum, London, SW7 5BD, UK
Get access

Abstract

Ostracodes are ecologically diverse at the present day, inhabiting marine, nonmarine and (semi)terrestrial environments. Modern benthic faunas are dominated by Podocopa (marine and nonmarine Podocopida, marine Platycopida, and extremely rare marine Palaeocopida), while the Myodocopa (Myodocopida and Halocyprida) are diverse in the marine pelagic realm, as well as having many nektobenthic taxa. Their excellent fossil record facilitates reconstructions of their phylogenetic relationships and ecological adaptations throughout their Phanerozoic history. The earliest known ostracodes are of Ordovician age, when representatives of the extant orders Podocopida, Platycopida and Palaeocopida were already present, together with (possible) early Myodocopa and extinct orders such as the Leperditicopida. Cambrian bivalved arthropods such as bradoriids and phosphatocopids are no longer regarded as Ostracoda.

Ordovician ostracodes were predominantly marine meiobenthos, diversifying into depth-related assemblages dominated by palaeocopids. The beginnings of podocopan radiations in marginal marine environments (brackish and hypersaline waters) are seen in the Silurian, as is an ecological shift of nektobenthic myodocopans to form the first pelagic ostracode faunas. Of the diverse marine Paleozoic palaeocopids, only a single lineage, the puncioids, survived beyond the Permian and today live interstitially in high-energy shallow marine environments. Post-Paleozoic marine benthic ostracode faunas are dominated by cytheroidean podocopids which gave rise to several radiations in the Mesozoic and Cenozoic. The healdiid metacopines (podocopans), of Devonian origins, enjoyed a marine radiation in the Triassic and Early Jurassic and then became extinct. Marine platycopids were also significant components of Mesozoic marine faunas and are relatively diverse in warm, shallow carbonate environments today.

Suggestions that the first freshwater ostracodes were Devonian leperditicopids are controversial; undoubted nonmarine / freshwater radiations developed during the Early Carboniferous, including darwinuloidean and carbonitoidean podocopids and possibly some platycopids, together with cytheroidean podocopids (limnocytherids) in the Late Carboniferous. Of these only the darwinuloideans and limnocytherids survived the end-Permian extinctions and are still found in modern nonmarine waters; however, the dominant freshwater ostracodes today are the cypridoidean podocopids, whose radiation began in the Triassic and attained explosive proportions in the Late Jurassic - Early Cretaceous (although there are controversial suggestions of Paleozoic origins for this group). In addition to the limnocytherids there have been several other, separate invasions of nonmarine waters by cytheroidean podocopids, notably the cytherideids and the commensal entocytherids. Radiations in damp terrestrial environments have been initiated by both marine and nonmarine groups, but such invasions lack a recognized fossil record; (semi)terrestrial cypridoideans and darwinuloideans may represent Late Mesozoic radiations, while the Terrestricytheroidea, with marine affinities, may be much older, possibly Late Paleozoic in origin.

Type
Research Article
Copyright
Copyright © 2003 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athersuch, J. and Horne, D. J. 1984. A review of some European genera of the Family Loxoconchidae (Crustacea: Ostracoda). Zoological Journal of the Linnean Society, 81: 122.CrossRefGoogle Scholar
Aubrecht, R. and Kozur, H. 1995. Pokornyopsis (Ostracoda) from submarine fissure fillings and cavities in the Late Jurassic of Czorsztyn Unit and the possible origin of the Recent anchialine faunas. Neues Jahrbuch für Geologie und Palontologie, Abhandlungen, 196: 117.CrossRefGoogle Scholar
Bandel, K. and Becker, G. 1975. Ostracoden aus pelagischen Kalken der Karnischen Alpen (Silurium bis Unterkarbon). Senckenbergiana lethaea, 56: 183.Google Scholar
Becker, G. 2000. Progress in mid Palaeozoic palaeoceanographical studies from Ostracoda - from local to global importance (review). Senckenbergiana lethaea, 80: 555566.CrossRefGoogle Scholar
Becker, G. 2001. The Superfamily Bairdiacea Sars, 1888. 1. Family Bairdiidae Sars, 1888 (Palaeozoic members only). Neues Jahrbuch für Geologie und Palontologie, Abhandlungen, 220: 267294.CrossRefGoogle Scholar
Benson, R. H. 1990. Ostracoda and the discovery of global Cainozoic palaeoceanographical events, p. 4158. In Whatley, R. and Maybury, C. (eds), Ostracoda and global events. Chapman and Hall, London.CrossRefGoogle Scholar
Benson, R. H. and Sylvester-Bradley, P. C. 1971. Deep-sea ostracodes and the transformation of ocean to sea in the Tethys, p. 6391 In Oertli, H. J. (ed.), Paleoecologie Ostracodes, Pau 1970, Bull. Centre Rech. Pau-SNPA, 5 (suppl.).Google Scholar
Boomer, I. D. and Whatley, R. C. 1992. Ostracoda and dysaerobia in the Lower Jurassic of Wales: the reconstruction of past oxygen levels. Palaeogeography, Palaeoclimatology, Palaeoecology, 99: 373379.CrossRefGoogle Scholar
Boomer, I., Whatley, R., Ayress, M., Warne, M. and Larwood, J. 1995. The origin and evolution of Cretaceous-Recent deep sea Bythocytheridae from the Southwest Pacific, p. 153161. In Riha, J. (ed.), Ostracoda and biostratigraphy. A. A. Balkema, Rotterdam.Google Scholar
Boomer, I., Whatley, R., Bassi, D., Fugagnoli, A. and Loriga, C. 2001. An Early Jurassic oligohaline ostracod assemblage within the marine carbonate platform sequence of the Venetian Prealps, NE Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 166: 331344.CrossRefGoogle Scholar
Brouwers, E. M., Cronin, T. M., Horne, D. J. and Lord, A. R. 2000. Recent shallow marine ostracods from high latitudes: implications for late Pliocene and Quaternary palaeoclimatology. Boreas, 29: 127143.CrossRefGoogle Scholar
Carbonel, P., Colin, J.-P., Danielopol, D. L., Löffler, H. and Neustrueva, I. 1988. Paleoecology of limnic ostracodes: a review of some major topics. Palaeogeography, Palaeoclimatology, Palaeoecology, 62: 413461.CrossRefGoogle Scholar
Colin, J.-P. and Carbonel, P., 1990. Phylogenetical affinities of Cytherissa with other Cytherideinae (Vernoniella, Fabanella, Neocyprideis, Cyprideis). A paleontological approach. In Danielopol, D. L., Carbonel, P. and Colin, J.-P. (eds), Cytherissa (Ostracoda) - the Drosophila of paleolimnology. Bulletin de l'Institut de Géologie du Bassin d'Aquitaine, 47: 8395.Google Scholar
Colin, J.-P., Carbonel, P. and Olteanu, R., 1990. A review of the paleobiogeography and paleoecology of the closest groups of Cytherissa: from the Mesozoic Fabanella and Vernoniella to the Cenozoic Cyprideis. In Danielopol, D. L., Carbonel, P. and Colin, J.-P. (eds), Cytherissa (Ostracoda) - the Drosophila of paleolimnology. Bulletin de l'Institut de Géologie du Bassin d'Aquitaine, 47: 119133.Google Scholar
Colin, J.-P. and Danielopol, D. L. 1980. Sur la morphologie, la systématique, la biogéographie et l'évolution des ostracodes Timiriaseviinae (Limnocytheridae). Paléobiologie Continentale, 11: 151.Google Scholar
Crane, P. R., Friis, E. M. and Pedersen, K. R. 1995. The origin and early diversification of angiosperms. Nature, 374: 2733.CrossRefGoogle Scholar
Cronin, T. M. 1985. Speciation and stasis in marine Ostracoda: climatic modulation of evolution. Science, 227: 6063.CrossRefGoogle ScholarPubMed
Cronin, T. M. 1988. Gepgraphical isolation in marime species: evolution and speciation in Ostracoda, I, p. 871889 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11, Kodansha / Elsevier, Tokyo.Google Scholar
Cronin, T. M. and Schmidt, N. 1988. Evolution and biogeography of Orionina in the Atlantic, Pacific and Caribbean: evolution and speciation in Ostracoda, II, p. 927938 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11, Kodansha / Elsevier, Tokyo.Google Scholar
Danielopol, D. L. 1977. On the origin and diversity of European freshwater interstitial ostracods, p. 295305 In Löffler, H. and Danielopol, D. (eds), Aspects of ecology and zoogeography of Recent and fossil Ostracoda. D W. Junk b.v. Publeishers, The Hague.Google Scholar
Danielopol, D. L. 1980. An essay to assess the age of the freshwater interstitial ostracods of Europe, Bijdragen tot de Dierkunde, 50: 243291.CrossRefGoogle Scholar
Danielopol, D. L. 1990. The origin of the anchialine cave fauna - the “deep sea” versus the “shallow water” hypothesis tested against the empirical evidence of the Thaumatocyprididae (Ostracoda). Bijdragen tot de Dierkunde, 60: 137143.Google Scholar
Danielopol, D. L. and Betsch, J. M. 1980. Ostracodes terrestres de Madagascar: systématique, origine, adaptations. Revue d'Écologie et de Biologie du Sol. 17: 87123.Google Scholar
Danielopol, D. L. and Bonaduce, G. 1990a. Origin and distribution of the interstitial species group Xestoleberis arcturi Triebel (Ostracoda, Crustacea). Courier Forschungsinstitut Senckenberg, 123: 6986.Google Scholar
Danielopol, D. L. and Bonaduce, G. 1990b. The colonization of subsurface habitats by the Loxoconchidae Sars and the Psammocytheridae, Klie, p. 438439 In Whatley, R. and Maybury, C. (eds), Ostracoda and global events, Chapman and Hall, London.Google Scholar
Danielopol, D. L., Bonaduce, G. and Baltanas, A. 1995. A supposed deep-sea origin for subsurface Xestoleberididae ostracods? p. 1928 In Riha, J. (ed.), Ostracoda and biostratigraphy, A. A. Balkema, Rotterdam.Google Scholar
Danielopol, D. L. and Hart, C. W. 1985. Notes on the center of origin and on the antiquity of the Sphaeromicolinae, with description of Hobbsiella, new genus (Ostracoda, Entocytheridae). Stygologia: 1, 5470.Google Scholar
Danielopol, D. L. and Vespremeanu, E. E. 1964. The presence of ostracods on floating fen soil in Rumania. Fragmenta balcanica Musei Macedonici Scientiarum naturalium, 5: 3035.Google Scholar
De Deckker, P. 1983. Terrestrial ostracods in Australia, p. 87100 In Lowry, J. K. (ed.), Papers from the conference on the biology and evolution of Crustacea, Australian Museum Memoir 18.Google Scholar
Dépêche, F. 1985. Lias supérieur, Dogger, Malm, p. 119145 In Oertli, H. J. (ed.), Atlas des Ostracodes de France, Bulletin des Centres de Recherche et Exploration-Production, Elf-Aquitaine, Mémoire 9.Google Scholar
Dingle, R. V. 1995. Continental shelf upwellingand benthic Ostracoda in the Benguela System (southeastern Atlantic Ocean), Marine Geology, 122: 201225.CrossRefGoogle Scholar
Ducasse, O., Bekaert, O. and Rousselle, L. 1991. Les Loxoconchidae (ostracodes) a la limite Oligo-Miocène en Aquitaine: évolution, adaptation et biostratigraphie. Geobios, 24: 435462.CrossRefGoogle Scholar
Friedman, G. M. and Lundin, R. F. 1998. Freshwater ostracodes from the Upper Middle Devonian fluvial facies, Catskill Mountains, New York. Journal of Paleontology, 72: 485490.CrossRefGoogle Scholar
Gray, J. 1988. Evolution of the freshwater ecosystem: the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 62: 1214.CrossRefGoogle Scholar
Harding, J. P. 1955. The Evolution of Terrestrial Habitats in an Ostracod. In Symposium on Organic Evolution, National Institute of Sciences of India, New Delhi, Bulletin 7: 104106.Google Scholar
Horne, D. J. 1999. Ocean circulation modes of the Phanerozoic: implications for the antiquity of deep-sea benthonic invertebrates. Crustaceana, 72: 9991018.CrossRefGoogle Scholar
Horne, D. J. 2002. Ostracod biostratigraphy and palaeoecology of the Purbeck Limestone Group in southern England. Special Papers in Palaeontology, 68: 5370.Google Scholar
Horne, D.J. In press. Homology and homoeomorphy in ostracod limbs. Hydrobiologia.Google Scholar
Horne, D. J., Cohen, A. and Martens, K. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda, p. 536 In Holmes, J. A. and Chivas, A. (eds), The Ostracoda: applications in Quaternary Research. AGU Geophysical Monograph 131.Google Scholar
Horne, D. J. and Martens, K. 1998. An assessment of the importance of resting eggs for the evolutionary success of Mesozoic nonmarine cypridoidean Ostracoda (Crustacea). Archiv für Hydrobiologie, Special Issues. Advances in Limnology, 52: 549561.Google Scholar
Hou, Xianguang, Siveter, D. J., Williams, M., Walossek, D. and Bergstrom, J. 1996. Appendages of the arthropod Kunmingella from the early Cambrian of China: its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda. Philosophical Transactions of the Royal Society of London, B, 351: 11311145.Google Scholar
Jarvis, I., Carson, G.A., Cooper, M.K.E., Hart, M.B., Leary, P.N., Tocher, B.A., Horne, D. and Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event. Cretaceous Research, 9: 3103.CrossRefGoogle Scholar
Jones, R., Whatley, R. C. and Cronin, T. 1998. The zoogeographical distribution of deep water Ostracoda in the Arctic Ocean, p. 8390 In Crasquin-Soleau, S., Braccini, E. and Lethiers, F. (eds), What about Ostracoda! Bulletin du Centre Recherche Elf Exploration et Production, Mémoire 20.Google Scholar
Kamiya, T. 1988. Morphological and ethological adaptations of Ostracoda to microhabitats in Zostera beds, p. 303318 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11. Kodansha / Elsevier, Tokyo.Google Scholar
Keen, M. C. 1988. The evolution and distribution of cytherettine ostracods, p. 967986 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11. Kodansha / Elsevier, Tokyo.Google Scholar
Knox, L. W. and Gordon, E. A. 1999. Ostracodes as indicators of brackish water environments in the Catskill Magnafacies (Devonian) of New York State. Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 922.CrossRefGoogle Scholar
Kozur, H. 1991. Permian deepwater ostracods from Sicily (Italy). Part 2: biofacial evaluation and remarks to the Silurian to Triassic palaeopsychrospheric ostracods. Geologische-PalontologischeMitteilungen Innsbruck, 3: 2538.Google Scholar
Kristan-Tollman, E. 1977. On the development of the muscle-scar patterns in Triassic Ostracoda, p. 133143 In Löffler, H. and Danielopol, D. (eds), Aspects of ecology and zoogeography of Recent and fossil Ostracoda. D. W. Junk b.v. Publishers, The Hague.Google Scholar
Krsti, N. 1977. The ostracod genus Tyrrhenocythere, p. 395405 In Löffler, H. and Danielopol, D. (eds), Aspects of ecology and zoogeography of Recent and fossil Ostracoda. D. W. Junk b.v. Publishers, The Hague.Google Scholar
Lethiers, F. and Crasquin, S. 1987. Reconnaissance des milieux profonds de la Paléotéthys ' l'aide des ostracodes. Bull. Soc. géol. France, 3: 415423.CrossRefGoogle Scholar
Lethiers, F. and Damotte, R. 1993. La grande dispersion des espèces d'ostracodes (Crustacea) d'eau douce à la fin de l'ère primaire. Comptes Rendues de l'Academie des Sciences, Paris, 316, Série II: 427433.Google Scholar
Lethiers, F. and Raymond, D. 1991. Les crises du Dévonien supérieur par l'étude des faunes d'ostracodes dans leu cadre paléogéographique. Palaeogeography, Palaeoclimatology, Palaeoecology, 88: 133146.CrossRefGoogle Scholar
Lethiers, F. and Whatley, R. 1994. The use of Ostracoda to reconstruct the oxygen levels of Late Palaeozoic oceans. Marine Micropaleontology, 24: 5769.CrossRefGoogle Scholar
Lethiers, F. and Whatley, R. 1995. Oxygénation des eaux et ostracodes filtreurs: application au Devonian-Dinantien. Geobios, 28: 199207.CrossRefGoogle Scholar
Lord, A. R. 1982. Metacopine ostracods in the Lower Jurassic, p. 262277 In Banner, F. T. and Lord, A. R. (eds), Aspects of Micropalaeontology. George Allen and Unwin, London.CrossRefGoogle Scholar
Lord, A. and Malz, H. 1981. The ostracod suborders Platycopina and Metacopina, a question of priority and stability in nomenclature. Senckenbergiana Lethaea, 62: 141143.Google Scholar
Lundin, R. F. 1988. Is Neckajatia an ancestor of the platycope ostracodes? p. 10511060 In Hanai, T., Ikeya, N. and Ishizaki, K., (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11. Kodansha / Elsevier, Tokyo.Google Scholar
Lundin, R. F., Williams, M. and Siveter, D. J. 1995. Domatial dimorphism occurs in leperditellid and monotiopleurid ostracodes. Journal of Paleontology, 69: 886896.CrossRefGoogle Scholar
McKenzie, K. G. 1971. The palaeozoogegraphy of freshwater Ostracoda, p. 207238 In Oertli, H. J. (ed.), Paléoécologie des ostracodes, Bulletin Centre de Recherches Pau-SNPA., 5 suppl. Google Scholar
Maddocks, R. F. 1990. Living and fossil Macrocyprididae (Ostracoda). The University of Kansas Paleontological Contributions, Monograph 2, 404 pp.Google Scholar
Malz, H. and Jellinek, T. 1989. Cytherellidae Ostracoden aus dem E-afrikanischen Küstengebiet. Modell-Vorstellungen zur Differenzierung und phylogenetischen Entwicklung. Courier Forschungsinstitut Senckenberg, 113: 187233.Google Scholar
Malz, H. and Lord, A. 1988. Recent ornate bairdiid Ostracoda: origin and distribution, p. 6374 In Hanai, T., Ikeya, N., and Ishizaki, K. (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11. Kodansha / Elsevier, Tokyo.Google Scholar
Martens, K. 1994. Ostracod speciation in ancient lakes: a review, p. 203222 In Martens, K., Goddeeris, B. and Coulter, G. (eds). Speciation in ancient lakes, Adv. Limnol., 44.Google Scholar
Martens, K. 1998. General morphology of nonmarine ostracods, p. 5775 In Martens, K. (ed.), Sex and parthenogenesis: evolutionary ecology of reproductive modes in nonmarine ostracods. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
Martens, K., Horne, D. J. and Griffiths, H. I. 1998. Age and diversity of nonmarine ostracods, p. 3755 In Martens, K. (ed.), Sex and parthenogenesis: evolutionary ecology of reproductive modes in nonmarine ostracods. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
Martens, K., Rossetti, G. and Horne, D. J. 2003. How ancient are ancient asexuals? Proceedings of the Royal Society of London, B, 270: 723729.CrossRefGoogle ScholarPubMed
Martens, K. and Schön, I. 1999. Crustacean diversity in ancient lakes: a review. Crustaceana, 72: 900910.CrossRefGoogle Scholar
Maybury, C. and Whatley, R. C. 1988. The evolution of high diversity in the ostracod communities of the Upper Pliocene faunas of St Erth (Cornwall, England) and North West France, p. 569596 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11. Kodansha / Elsevier, Tokyo.Google Scholar
Mazepova, G. 1990. Rakuschkovye Rachki (Ostracoda) Baykala (Ostracoda of Lake Baikal). Novosibirsk (Nauka), 470 pp. (in Russian).Google Scholar
Neale, J. W. 1983. Geological history of the Cladocopina, p. 612626 In Maddocks, R. F. (ed.), Applications of Ostracoda, University of Houston Geosciences.Google Scholar
Olemspska, E. 2001. Palaeozoic roots of the sigilliid ostracods. Marine Micropalaeontology, 41: 109123.CrossRefGoogle Scholar
Park, L. E. and Martens, K. 2001. Four new species of Gomphocythere (Crustacea, Ostracoda) from Lake Tanganyika, East Africa. Hydrobiologia, 450: 129147.CrossRefGoogle Scholar
Park, L. E., Martens, K. and Cohen, A. S. 2002. Phylogenetic relationships of Gomphocythere (Ostracoda) in Lake Tanganyika, East Africa. Journal of Crustacean Biology, 22: 1527.CrossRefGoogle Scholar
Schornikov, E. I. 1969. Novoe semeystvo rakushkovykh rachkov (Ostracoda) iz supralitorali Kurilskikh Ostrovov (A new family of Ostracoda from the supralittoral zone of Kuril Islands). Zoologicheskiy Zhurnal, 45 (1): 3249. [Russian with English abstract].Google Scholar
Schornikov, E. I. 1980. Ostracody v nazemnykh biotopakh (Ostracodes in terrestrial biotopes). Zoologicheskiy Zhurnal, 59 (9): 13061319. [Russian with English abstract].Google Scholar
Schornikov, E. I. 1988. The pathways of morphological evolution of Bythocytheridae, p. 951965 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11. Kodansha / Elsevier, Tokyo.Google Scholar
Schornikov, E. I. 1990. Evolution and classification of Bythocytheridae. Courier Forschungsinstitut Senckenberg, 123: 291302.Google Scholar
Schudack, M. E. 1996. Ostracode and charophyte biogeography in the continental Upper Jurassic of Europe and North America as influence by plate tectonics and paleoclimate, p. 333341 In Morales, M. (ed.), The continental Jurassic, Museum of North Arizona, Bulletin, 60.Google Scholar
Schudack, M. E. and Schudack, U. 2002. Ostracods from the Middle Dinosaur Member of the Tendaguru Formation (Upper Jurassic of Tazania). Neues Jahrbuch für Geologie und Palontologie, Monatshefte, 2002 (6): 321336.CrossRefGoogle Scholar
Shu, D., Vannier, J., Luo, H., Chen, L., Zhang, X. and Hu, S. 1999. Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chenjiang fossil Lagersttate (lower Cambrian; southwest China). Lethaia, 32: 279298.CrossRefGoogle Scholar
Siveter, D. J. and Williams, M. 1997. Cambrian bradoriid and phosphatocopid arthropods of North America. Special Papers in Palaeontology, 57: 169.Google Scholar
Siveter, D. J. 1984. Ecology of Silurian ostracods. Special Papers in Palaeontology, 32: 7185.Google Scholar
Siveter, D. J. and Vannier, J. M. C. 1990. The Silurian myodocope ostracode Entomozoe from the Pentland Hills, Scotland: its taxonomic, ecological and phylogenetic significance and the affinity of the bolbozoid myodocopes. Transactions of the Royal Society of Edinburgh: Earth Sciences, 81: 123.Google Scholar
Siveter, D. J., Vannier, J. M. C. and Palmer, D. 1991. Silurian Myodocopes: pioneer pelagic ostracods and the chronology of an ecological shift. Journal of Micropalaeontology, 10 (2): 151173.CrossRefGoogle Scholar
Smith, A. J. and Horne, D. J. 2002. Ecology of marine, marginal marine and nonmarine ostracodes, p. 3764 In Holmes, J. A. and Chivas, A. (eds), The Ostracoda: applications in Quaternary Research. AGU Geophysical Monograph, 131.Google Scholar
Sohn, I.G. 1985. Latest Mississippian (Namurian A) nonmarine ostracodes from West Virginia and Virgina. Journal of Paleontology, 59: 446460.Google Scholar
Spears, T. and Abele, L. G. 1997. Crustacean phylogeny inferred from 18S rDNA, p. 169187 In Fortey, R. A. and Thomas, R. H. (eds), Arthropod relationships, Systematics Association Special Volume Series 55.Google Scholar
Steineck, P. L., Breen, M., Nevins, N. and O'Hara, P. 1984. Middle Eocene and Oligocene deep-sea Ostracoda from the Oceanic Formation, Barbados. Journal of Paleontology, 58: 14631496.Google Scholar
Steineck, P. L., Maddocks, R. F., Turner, R. D., Coles, G. and Whatley, R. 1990. Xylophile Ostracoda in the deep sea, p. 307319 In Whatley, R. and Maybury, C., (eds), Ostracoda and global events. Chapman and Hall, London.CrossRefGoogle Scholar
Swain, F. M. 1976. Evolutionary development of cypridopsid Ostracoda. Abhandlungen und Verhandlungen des naturwissenschaftlichen Vereins in Hamburg, Neue Folge 18/19 (Supplement): 103119.Google Scholar
Tibert, N. E. and Scott, D. B. 1999. Ostracodes and agglutinated Foraminifera as indicators of paleoenvironmental change in an Early Carboniferous brackish bay, Atlantic Canada. Palaios, 14: 246260.CrossRefGoogle Scholar
Vannier, J. M. C. 1990. Functional morphology and mode of life of Palaeozoic leiocope ostracodes. Lethaia, 23: 103112.CrossRefGoogle Scholar
Vannier, J. and Abe, K. 1995. Size, body plan and respiration in the Ostracoda. Palaeontology, 38: 843873.Google Scholar
Vannier, J., Wang, S. Q. and Coen, M. 2001. Leperditicopid arthropods (Ordovician-Late Devonian): functional morphology and ecological range. Journal of Paleontology, 75: 7595.2.0.CO;2>CrossRefGoogle Scholar
Walossek, D. and Müller, K. J. 1998. Early arthropod phylogeny in the light of the Cambrian “Orsten” fossils, p. 185231 In Edgecombe, G. D. (ed.). Arthropod fossils and phylogeny. Columbia University Press, New York.Google Scholar
Whatley, R. C. 1985. Evolution of the ostracods Bradleya and Poseidonamicus in the deep-sea Cainozoic of the southwest Pacific. Special Papers in Palaeontology, 33: 103116.Google Scholar
Whatley, R. C. 1988. Pattern and rates of evolution among Mesozoic Ostracoda, p. 10211040 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds), Evolutionary biology of Ostracoda, Developments in Palaeontology and Stratigraphy, 11. Kodansha / Elsevier, Tokyo.Google Scholar
Whatley, R. 1990a. The relationship between extrinsic and intrinsic events in the evolution of Mesozoic nonmarine Ostracoda, p. 253263 In Kaufmann, E.G. and Walliser, O.H. (eds.), Extinction events in Earth history. Lecture Notes in Earth Sciences, 30.Google Scholar
Whatley, R. 1990b. Ostracoda and global events, p. 324 In Whatley, R. and Maybury, C., (eds.), Ostracoda and global events. Chapman and Hall.CrossRefGoogle Scholar
Whatley, R. C. 1991. The platycopid signal: a means of detecting kenoxic events using Ostracoda. Journal of Micropalaeontology, 10: 181185.CrossRefGoogle Scholar
Whatley, R. 1992. The reproductive and dispersal strategies of Cretaceous nonmarine Ostracoda: the key to pandemism, p. 177192 In Mateer, N.J. and Chen, P.J. (eds), Aspects of nonmarine Cretaceous geology. China Ocean Press, Beijing.Google Scholar
Whatley, R. 1995. Ostracoda and oceanic palaeoxygen levels. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, Hamburg, 92: 337353.Google Scholar
Whatley, R.C. and Ballent, S.C. 1996. In search of the earliest nonmarine cypridacean ostracods: new discoveries from the Early Mesozoic of western Argentina. GeoResearch Forum, 1–2: 111118.Google Scholar
Whatley, R. and Boomer, I. 2000. Systematic review and evolution of the early Cytheruridae (Ostracoda). Journal of Micropalaeontology, 19: 139151.CrossRefGoogle Scholar
Whatley, R. C. and Coles, G. P. 1991. Global change and the biostratigraphy of North Atlantic Cainozoic deep water Ostracoda. Journal of Micropalaeontology, 9: 119132.CrossRefGoogle Scholar
Whatley, R. and Maybury, C. 1981. The evolution and ditribution of the ostracod genus Leptocythere Sars, 1925 from the Miocene to Recent of Europe. Revista Española de Micropaleontología, 13: 2542.Google Scholar
Whatley, R. C. and Moguilevsky, A. 1998. The origins and early evolution of the Limnocytheridae (Crustacea, Ostracoda), p. 271285 In Crasquin-Soleau, S., Braccini, E. and Lethiers, F. (eds), What about Ostracoda! Bulletin du Centre Recherche Elf Exploration et Production, Mémoire 20.Google Scholar
Whatley, R. C., Munoz-Torres, F. and Van Harten, D. 1998. The Ostracoda of an isolated Neogene saline lake in the western Amazon Basin, p. 231245 In Crasquin-Soleau, S., Braccini, E. and Lethiers, F., (eds), What about Ostracoda! Bulletin du Centre Recherche Elf Exploration et Production, Mémoire 20.Google Scholar
Whatley, R. C., Staunton, M. and Kaesler, R. L. 1997. The depth distribution of recent marine Ostracoda from the southern Strait of Magellan. Journal of Micropalaeontology, 16: 121130.CrossRefGoogle Scholar
Wilkinson, I. P., Kolpenskaya, N. N. and Whatley, R. C. 1998. The temporal and spatial distribution of Mandelstamia, with particular emphasis on the Kimmeridgian and Volgian, p. 329345 In Crasquin-Soleau, S., Braccini, E. and Lethiers, F., (eds), What about Ostracoda! Bulletin du Centre Recherche Elf Exploration et Production, Mémoire 20.Google Scholar
Williams, M., Floyd, J. D., Miller, C. G. and Siveter, D. J. 2001. Scottish Ordovician ostracodes: a review of their palaeoenvironmental, biostratigraphical and palaeobiogeographical significance. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91: 499508.CrossRefGoogle Scholar
Williams, M., Floyd, J. D., Jose Salas, M., Siveter, D. J., Stone, P. and Vannier, J. M. C. in press, 2003. Patterns of ostracod migration for the “North Atlantic” region during the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology.CrossRefGoogle Scholar
Williams, M. and Siveter, D. J. 1996. Lithofacies-related ostracod associations in the middle Ordovician Bromide Formation, Oklahoma, USA. Journal of Micropalaeontology, 15: 6981.CrossRefGoogle Scholar
Wouters, K. and Martens, K. 1994. Contribution to the knowledge of the Cyprideis species flock (Crustacea, Ostracod) of Lake Tanganyika, with the description of three new species. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique (Biologie), 64: 111128.Google Scholar
Wouters, K. and Martens, K. 2001. On the Cyprideis species flock (Crustacea, Ostracoda) in Lake Tanganyika, with the description of four new species. Hydrobiologia, 450: 111127.CrossRefGoogle Scholar