Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T03:24:08.134Z Has data issue: false hasContentIssue false

Origins and Early Evolution of Predation

Published online by Cambridge University Press:  21 July 2017

Stefan Bengtson*
Affiliation:
Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
Get access

Abstract

Predation, in the broad sense of an organism killing another organism for nutritional purposes, is probably as old as life itself and has originated many times during the history of life. Although little of the beginnings is caught in the fossil record, observations in the rock record and theoretical considerations suggest that predation played a crucial role in some of the major transitions in evolution. The origin of eukaryotic cells, poorly constrained to about 2.7 Ga by geochemical evidence, was most likely the ultimate result of predation among prokaryotes. Multicellularity (or syncytiality), as a means of acquiring larger size, is visible in the fossil record soon after 2 Ga and is likely to have been mainly a response to selective pressure from predation among protists. The appearance of mobile predators on bacteria and protists may date back as far as 2 Ga or it may be not much older than the Cambrian explosion, or about 600 Ma. The combined indications from the decline of stromatolites and the diversification of acritarchs, however, suggest that such predation may have begun around 1 Ga. The Cambrian explosion, culminating around 550 Ma, represents the transition from simple, mostly microbial, ecosystems to ones with complex food webs and second- and higher-order consumers. Macrophagous predators were involved from the beginning, but it is not clear whether they originated in the plankton or in the benthos. Although predation was a decisive selective force in the Cambrian explosion, it was a shaper rather than a trigger of this evolutionary event.

Type
Section III: Processes
Copyright
Copyright © 2002 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. 2000. The evolution of predator-prey interactions: theory and evidence. Annual Review of Ecology and Systematics, 31:79105.Google Scholar
Agrawal, A. A., Laforsch, C., and Tollrian, R. 1999. Transgenerational induction of defences in animals and plants. Nature, 401:6063.CrossRefGoogle Scholar
Allison, C. W. 1981. Siliceous microfossils from the Lower Cambrian of Northwest Canada: possible source for biogenic chert. Science, 211:5355.CrossRefGoogle ScholarPubMed
Allison, C. W., and Hilgert, J. W., 1986. Scale microfossils from the Early Cambrian of Northwest Canada. Journal of Paleontology, 60:9731015.Google Scholar
Alpert, S. P. 1977. Trace fossils and the basal Cambrian boundary, p. 18. In Crimes, T. P. and Harper, J. P. (eds.), Trace fossils 2. Geological Journal, Special Issue.Google Scholar
Alpert, S. P., and Moore, J. N. 1975. Lower Cambrian trace fossil evidence for predation on trilobites. Lethaia, 8:223230.Google Scholar
Awramik, S. 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science, 174:825827.Google Scholar
Awramik, S. M., and Sprinkle, J. 1999. Proterozoic stromatolites: The first Marine Evolutionary Biota. Historical Biology, 13:241253.Google Scholar
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences, USA, 95:606611.Google Scholar
Babcock, L. E. 1993. Trilobite malformation and the fossil record of behavioral asymmetry. Journal of Paleontology, 67:217229.CrossRefGoogle Scholar
Babcock, L. E., and Robison, R. A. 1989. Preferences of Paleozoic predators. Nature, 337:695696.Google Scholar
Bathurst, R. G. C. 1967. Subtidal gelatinous mat, sand stabilizer and food, Great Bahama Bank. Journal of Geology, 75:736738.CrossRefGoogle Scholar
Bauld, J., D'Amelio, E., and Farmer, J. 1992. Modern microbial mats, p. 261270. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Bengtson, S. 1968. The problematic genus Mobergella from the Lower Cambrian of the Baltic area. Lethaia, 1:325351.Google Scholar
Bengtson, S. 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia, 9:185206.Google Scholar
Bengtson, S. 1977. Aspects of problematic fossils in the early Palaeozoic. Acta Universitatis Upsaliensis. Abstracts of Uppsala Dissertations from the Faculty of Science, 415:171.Google Scholar
Bengtson, S. 1983. The early history of the Conodonta. Fossils and Strata, 15:519.Google Scholar
Bengtson, S. 1994. The advent of animal skeletons, p. 412425. In Bengtson, S. (ed.), Early Life on Earth,. obel Symposium 84. Clumbia University Press, New York.Google Scholar
Bengtson, S., and Conway Morris, S. 1992. Early radiation of biomineralizing phyla, p. 447481. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York.Google Scholar
Bengtson, S., Farmer, J. D., Fedonkin, M. A., Lipps, J. H., and Runnegar, B. 1992. The Proterozoic—Early Cambrian evolution of metaphytes and metazoans, p. 425462. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Bengtson, S., and Hou, X. 2001. The integument of Cambrian chancelloriids. Acta Palaeontologica Polonica, 46:122.Google Scholar
Bengtson, S., and Yue, Z. 1992. Predatorial borings in Late Precambrian mineralized exoskeletons. Science, 257:367369.CrossRefGoogle ScholarPubMed
Bengtson, S., and Yue, Z. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277:16451648.Google Scholar
Benton, M. J. 1983. Progress and competition in macroevolution. Biological Reviews, 62:395–338.Google Scholar
Bergquist, P. R. 1978. Sponges. University of California Press, Berkeley, 268 p.Google Scholar
Bergström, J. 1973. Organization, life, and systematics of trilobites. Fossils and Strata, 2:169.Google Scholar
Bertrand-Sarfati, J., and Walter, M. R. 1981. Stromatolite biostratigraphy. Precambrian Research, 15:353371.CrossRefGoogle Scholar
Birkenmajer, K. 1977. Trace fossil evidence for predation on trilobites from Lower Cambrian of south Spitsbergen. Norsk Polarinstitutt Årbok, 1976:187194.Google Scholar
Bloeser, B. 1985. Melanocyrillium, a new genus of structurally complex late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. Journal of Paleontology, 59:741765.Google Scholar
Bonner, J. T. 1965. Size and Cycle: An Essay on me Structure of Biology. Princeton University Press, Princeton, NJ, 219 p.CrossRefGoogle Scholar
Bonner, J. T. 1993. Life Cycles. Reflections of an Evolutionary Biologist. Princeton University Press, Princeton, NJ, 209 p.Google Scholar
Bonner, J. T. 1998. The origins of multicellularity. Integrative Biology, 1:2736.Google Scholar
Bonner, J. T. 2000. First Signals. The Evolution of Development. Princeton University Press, Princeton, NJ, 156 p.Google Scholar
Brasier, M. D. 2000. The Cambrian explosion and the slow burning fuse. Science Progress, 83:7792.Google Scholar
Breyer, J. A., Busbey, A. B., Hanson, R. E., and Roy, E. C. I. 1995. Possible new evidence for the origin of metazoans prior to 1 Ga: Sediment-filled tubes from the Mesoproterozoic Allamoore Formation, Trans-Pecos Texas. Geology, 23:269272.Google Scholar
Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285:10331036.CrossRefGoogle ScholarPubMed
Bromham, L., Rambaut, A., Fortey, R., Cooper, A., and Penny, D. 1998. Testing the Cambrian explosion hypothesis by using a molecular dating technique. Proceedings of the National Academy of Sciences of the USA, 95:1238612389.Google Scholar
Budd, G. E. 2001. Ecology of nontrilobite arthropods and lobopods in the Cambrian, p. 404427. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Budd, G. E., and Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75:253295.Google Scholar
Buick, R., Dunlop, J. S. R., and Groves, D. I. 1981. Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an Early Archaean chert—barite unit from North Pole, Western Australia. Alcheringa, 5:161181.Google Scholar
Burne, R. V., and Moore, L. S. 1987. Microbialites: Organosedimentary deposits of benthic marine communities. Palaios, 2:241254.Google Scholar
Burzin, M. B. 1997. Zachem shipy dokembrijskomu fitoplanktonu? [Why do Precambrian phytoplankton have spines?] Priroda, 1997:98110 (in Russian).Google Scholar
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow shelf sequence in northwestern Canada. Nature, 369:477479.Google Scholar
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic—Phanerozoic transition. Paleobiology, 23:247262.Google Scholar
Butterfield, N. J. 2000. Bangiomorpha pubescens n.gen., n.sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26:386404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2001. Ecology and evolution of Cambrian plankton, p. 200216. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Butterfield, N. J., and Chandler, F. W. 1992. Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology, 35:943957.Google Scholar
Cavalier-Smith, T. 1987a. The origin of eukaryote and archaebacterial cells. Annals of the New York Academy of Sciences, 503:1754.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. 1987b. The simultaneous symbiotic origin of mitochondria, chloroplasts and microbodies. Annals of the New York Academy of Sciences, 503:5571.Google Scholar
Cavalier-Smith, T. 2001. Obcells as proto-organisms: Membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. Journal of Molecular Evolution, 53:555595.Google Scholar
Chanas, B., and Pawlik, J. R. 1995. Defenses of Caribbean sponges against predatory reef fish 2. Spicules, tissue toughness, and nutritional quality. Marine Ecology Progress Series, 127:195211.Google Scholar
Chanas, B., and Pawlik, J. R. 1996. Does the skeleton of a sponge provide a defense against predatory reef fish? Oecologia, 107:225231.Google Scholar
Chen, M., and Liu, K. 1986. [The geological significance of newly discovered microfossils from the Upper Sinian (Doushantuo age) phosphorites.] Scientia Geologica Sinica, 1986:4653.Google Scholar
Cloud, P. E. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution, 2:322350.Google Scholar
Cloud, P. E. 1968a. Atmospheric and hydrospheric evolution on the primitive earth. Science, 160:729736.Google Scholar
Cloud, P. E. Jr. 1968b. Pre-metazoan evolution and the origins of the Metazoa, p. 172. In Drake, E. T. (ed.), Evolution and Environment. Yale University Press, New Haven, CT.Google Scholar
Cloud, P. E., and Semikhatov, M. A. 1969. Proterozoic stromatolite zonation. American Journal of Science, 267:10171061.Google Scholar
CoBabe, E., and Ptak, A. J. 1999. Comparison of in situ mineral-associated lipid compositions in modern invertebrate skeletons: preliminary evidence of dietary and environmental influence. Paleobiology, 25:201211.Google Scholar
Conway Morris, S. 1985. The Middle Cambrian Metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London B, 307:507586.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology, 29:423467.Google Scholar
Conway Morris, S. 2000. The Cambrian “explosion”: Slow-fuse or megatonnage? Proceedings of the National Academy of Sciences, 97:44264429.Google Scholar
Conway Morris, S., and Bengtson, S. 1994. Cambrian predators: possible evidence from boreholes. Journal of Paleontology, 68:123.Google Scholar
Conway Morris, S., and Jenkins, R. J. F. 1985. Healed injuries in Early Cambrian trilobites from South Australia. Alcheringa, 9:167177.Google Scholar
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian and early Cambrian Strata. Geological Magazine, 124:97119.Google Scholar
Crimes, T. P. 1989. Trace fossils, p. 166185. In Cowie, J. W. and Brasier, M. D. (eds.), The Precambrian—Cambrian Boundary: Oxford Monographs in Geology and Geophysics. Oxford University Press, Oxford.Google Scholar
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic—Cambrian boundary, p. 177202. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York.Google Scholar
Crimes, T. P. 1994. The period of early evolutionary failure and the dawn of evolutionary success: The record of biotic changes across the Precambrian—Cambrian boundary, p. 105133. In Donovan, S. K. (ed.), The Paleobiology of Trace Fossils. Johns Hopkins University Press, Baltimore, MD.Google Scholar
Cutler, D. J. 2000. Estimating divergence times in the presence of an oversdispersed molecular clock. Molecular Biology and Evolution, 17:16471660.Google Scholar
Dawkins, R., and Krebs, R. J. 1979. Arms races between and within species. Proceedings of the Royal Society Biological Sciences Series B, 205:489511.Google Scholar
Debrenne, F., and Zhuravlev, A. Yu. 1997. Cambrian food web: A brief review. Geobios, M.S. no. 20:181188.Google Scholar
Des Marais, D. J., D'Amelio, E., Farmer, J. D., Barker Jørgensen, B., Palmisano, A. C., and Person, B. K. 1992. Case study of a modern microbial mat-building community: The submerged cyanobacterial mats of Guerro Negro, Baja California Sur, Mexico, p. 325333. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Droser, M. L., and Bottjer, D. J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, Western United States. Geology, 16:233236.Google Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. 1999. When the worm turned: Concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia. Geology, 27:625628.Google Scholar
Droser, M. L., and Li, X. 2001. The Cambrian radiation and the diversification of sedimentary fabrics, p. 137169. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Dunbar, C. O. 1960. Historical Geology, 2nd Ed. Wiley, New York, 500 p.Google Scholar
Dunlap, M., and Pawlik, J. R. 1998. Spongivory by parrotfish in Florida mangrove and reef habitats. Marine Ecology, 19:325337.CrossRefGoogle Scholar
de Duve, C. 1995. Vital Dust. Life as a Cosmic Imperative. Longman, 382 p.Google Scholar
Eerola, T. T. 2001. Climate change at the Neoproterozoic—Cambrian transition, p. 90106. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: An alternative to phyletic gradualism, p. 82115. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper & Co., San Francisco, CA.Google Scholar
Erben, H. K. 1975. Die Entwicklung der Lebewesen. Piper, München, 518 p.Google Scholar
Evans, J. W. 1912. The sudden appearance of the Cambrian fauna. Report of the Session of the International Geological Congress, Stockholm, 1910:543546.Google Scholar
Farmer, J. 1992. Grazing and bioturbation in modern microbial mats, p. 295297. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Faul, H. 1950. Fossil burrows from the Precambrian Ajibik Quartzite of Michigan. Journal of Paleontology, 24:102106.Google Scholar
Fischer, A. G. 1965. Fossils, early life and atmospheric history. Proceedings of the National Academy of Sciences, 53:12051215.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary “explosion”: Decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57:1333.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1997. The Cambrian evolutionary “explosion” recalibrated. BioEssays, 19:429432.Google Scholar
Garrett, P. 1970. Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals. Science, 167:171173.Google Scholar
Germs, G. J. B. 1972. The stratigraphy and paleontology of the Lower Nama Group, South West Africa. Chamber of Mines, Precambrian Research Unit, Bulletin: 1250.Google Scholar
Glaessner, M. F. 1972. Precambrian palaeozoology, p. 4352. In Jones, J. B. and McGowran, B. (eds.), Stratigraphic Problems of the Later Precambrian and Early Cambrian: University of Adelaide, Center for Precambrian Research, Special Paper.Google Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology, 11:212.Google Scholar
Gould, S.J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology, 62:319329.Google Scholar
Gould, S. J. 2002. The Structure of Evolutionary Theory. Belknap, Cambridge, MA, 1433 p.Google Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology, 6:383396.CrossRefGoogle Scholar
Gray, M. W. 1999. Evolution of organellar genomes. Current Opinion in Genetics and Development, 9:678687.Google Scholar
Gray, M. W., and Spencer, D. F. 1996. Organellar evolution, p. 109126. In Roberts, D. M., Sharp, P., Alderson, G., and Collins, M. (eds.), Evolution of Microbial Life. Cambridge University Press, Cambridge.Google Scholar
Grey, K. 1994. Stromatolites from the Palaeoproterozoic (Orosirian) Glengarry Group, Glengarry Basin, Western Australia. Alcheringa, 18:275300.Google Scholar
Grey, K., and Thorne, A. M. 1985. Biostratigraphic significance of stromatolites in upward shallowing sequences of the early Proterozoic Duck Creek Dolomite, Western Australia. Precambrian Research, 29:183206.Google Scholar
Grotzinger, J., and Rothman, D. H. 1996. An abiotic model for stromatolite morphogenesis. Nature, 383:423425.Google Scholar
Grotzinger, J. P. 1990. Geochemical model for Proterozoic stromatolite decline. American Journal of Science, 290:80103.Google Scholar
Grotzinger, J. P., Waiters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite—stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.Google Scholar
Gu, X. 1998. Early metazoan divergence was about 830 million years ago. Journal of Molecular Evolution, 47:369371.Google Scholar
Guillard, R. R. L., and Kilham, P. 1977. The ecology of marine planktonic diatoms, p. 372469. In Werner, D. (ed.), The Biology of Diatoms. University of California Press, Berkeley, CA.Google Scholar
Halanych, K. M. 1996. Testing hypotheses of chaetognath origins: long branches revealed by 18S ribosomal DNA. Systematic Biology, 45:223246.Google Scholar
Han, T.-M., and Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Science, 257:232235.Google Scholar
Hansen, B., Bjørnsen, P. K., and Hansen, H. J. 1994. The size ratio between planktonic predators and their prey. Limnology and Oceanography, 39:395403.Google Scholar
Hartman, W. D. 1981. Form and distribution of silica in sponges, p. 453493. In Simpson, T. L. and Volcani, B. E. (eds.), Silicon and siliceous structures in biological systems. Springer, New York.Google Scholar
Hausdorf, B. 2000. Early evolution of the Bilateria. Systematic Biology, 49:130142.Google Scholar
Hoffman, P. F. 1987. Early Proterozoic foredeeps, foredeep magmatism, and Superior-type iron-formations of the Canadian shield, p. 8598. In Kroener, A. (ed.), Proterozoic Lithospheric Evolution. Geodynamics Series 17, American Geophysical Union.Google Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P. 1998. A Neoproterozoic Snowball Earth. Science, 281:13421346.Google Scholar
Hofmann, H. J. 1971. Polygonomorph acritarch from the Gunflint Formation (Precambrian), Ontario. Journal of Paleontology, 45:522524.Google Scholar
Honjo, S., and Roman, M. R. 1978. Marine copepod fecal pellets: production, preservation and sedimentation. Journal of Marine Research, 36:4557.Google Scholar
House, C. H., Coath, C. D., Schopf, J. W., Harrison, T. M., and McKeegan, K. D. 2000. The carbon isotopic composition of individual Precambrian microfossils. First Astrobiology Science Conference, April 3–5, 2000.Google Scholar
Hughes, N. C. 2001. Ecologic evolution of Cambrian trilobites, p. 370403. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Hutchinson, G. E. 1961. The biologist poses some problems, p. 8594. In Sears, M. (ed.), Oceanography. American Association for the Advancement of Science, Publication.Google Scholar
Hyde, W. T., Crowley, T. J., Baum, S. K., and Peltier, W. R. 2000. Neoproterozoic “snowball Earth” simulations with a coupled climate/ice-sheet model. Nature, 405:425429.Google Scholar
Hyde, W. T., Crowley, T. J., Baum, S. K., and Peltier, W. R. 2001. Life, geology and snowball Earth: Reply. Nature, 409:306.Google Scholar
Javaux, E. J., Knoll, A. H., and Walter, M. R. 2001. Morphological and ecological complexity in early eukaryotic ecosystems. Nature, 412:6669.Google Scholar
Jensen, S. 1990. Predation by early Cambrian trilobites on infaunal worms—evidence from the Swedish Mickwitzia Sandstone. Lethaia, 23:2942.Google Scholar
Jensen, S. 1997. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42:1111.CrossRefGoogle Scholar
Katz, C. H. 1985. A nonequilibrium marine predator—prey interaction. Ecology, 66:14261438.Google Scholar
Kauffman, E. G., and Steidtmann, J. R. 1981. Are these the oldest metazoan trace fossils? Journal of Paleontology, 55:923947.Google Scholar
Kauffman, S. A. 1989. Cambrian explosion and Permian quiescence: Implications of rugged fitness landscapes. Evolutionary Ecology, 3:274281.Google Scholar
Kaufman, A. J., Knoll, A. H., and Awramik, S. M. 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology, 20:181185.Google Scholar
Kelley, P. H., and Hansen, T. A. 1993. Evolution of the naticid gastropod predator-prey system: An evaluation of the hypothesis of escalation. Palaios, 8:358375.Google Scholar
Kirschvink, J. L. 1992. Late Proterozoic low-latitude global glaciation: the Snowball Earth, p. 5152. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., Beukes, N. J., Gutzmer, J., Maepa, L. N., and Steinberger, R. E. 2000. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences, 97:14001405.Google Scholar
Kirschvink, J. L., and Hagadorn, J. W. 2000. A Grand Unified Theory of biomineralization, p. 139150. In Bäuerlein, E. (ed.), Biomineralization. Wiley–VCH, Weinheim.Google Scholar
Kitchell, J. A. 1983. Biotic interactions and siliceous marine phytoplankton: an ecological and evolutionary perspective, p. 285329. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossils Benthic Communities. Plenum, New York.Google Scholar
Knoll, A. H. 1992. The early evolution of Eukaryotes: a geological perspective. Science, 256:622627.Google Scholar
Knoll, A. H. 1994a. Neoproterozoic evolution and environmental change, p. 437449. In Bengtson, S. (ed.), Early Life on Earth. Columbia University Press, New York.Google Scholar
Knoll, A. H. 1994b. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences, USA, 91:67436750.Google Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284:21292137.Google Scholar
Kowalewski, M., Dulai, A., and Fürsich, F. T. 1998. A fossil record full of holes: The Phanerozoic history of drilling predation. Geology, 26:10911094.Google Scholar
Kruse, P. D., Zhuravlev, A. Yu., and James, N. P. 1995. Primordial metazoan—calcimicrobial reefs: Lower Cambrian, Aldan river, Siberian Platform. Palaios, 10:291321.Google Scholar
Landing, E. 1977. “Prooneotodus” tenuis (Müller, 1959) apparatuses from the Taconic allochthon, eastern New York: construction, taphonomy and the protoconodont “supertooth” model. Journal of Paleontology, 51:10721084.Google Scholar
Lang, B. F., Gray, M. W., and Burger, G. 1999. Mitochondrial genome evolution and the origin of eukaryotes. Annual Review of Genetics, 33:351397.Google Scholar
LeHouerou, H. N. 1996. The role of cacti (Opuntia spp.) in erosion control, land reclamation, rehabilitation and agricultural development in the Mediterranean basin. Journal of Arid Environments, 33:135159.Google Scholar
Levinton, J. S. 1982. Marine Ecology. Prentice-Hall, Englewood Cliffs, NJ, 526 p.Google Scholar
Levinton, J. S. 2001. Genetics, Paleontology, and Macroevolution, 2nd Ed. Cambridge University Press, Cambridge, 617 p.Google Scholar
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 376:5356.Google Scholar
Logan, G. A., Summons, R. E., and Hayes, J. M. 1997. An isotopic biogeochemical study of Neoproterozoic and early Cambrian sediments from the Centralian Superbasin, Australia. Geochimica et Cosmochimica Acta, 61:53915409.Google Scholar
Lowenstam, H. A., and Weiner, S. 1989. On Biomineralization. Oxford University Press, New York, 324 p.Google Scholar
Lynch, M. 1999. The age and relationships of the major animal phyla. Evolution, 53:319325.Google Scholar
Macnaughton, R. B., and Narbonne, G. 1999. Evolution and ecology of Neoproterozoic–Lower Cambrian trace fossils, NW Canada. Palaios, 14:97115.Google Scholar
Margulis, L. 1970. Origin of Eukaryotic Cells. Yale University Press, New Haven, CT.Google Scholar
Margulis, L. 1981. Symbiosis in Cell Evolution. Freeman, San Francisco, CA, 419 p.Google Scholar
Marin, F., Smith, M., Isa, Y., Muyzer, G., and Westbroek, P. 1996. Skeletal matrices, muci, and the origin of invertebrate skeletons. Proceedings of the US National Academy of Sciences, 93:15541559.Google Scholar
Martin, W., and Müller, M. 1998. The hydrogen hypothesis and the first eukaryote. Nature, 392:3741.Google Scholar
Martinsson, A. 1965. Aspects of a Middle Cambrian thanatotope on Öland. Geologiska Föreningens i Stockholm Förhandlingar, 87:81230.Google Scholar
Matthew, G. F. 1912. The sudden appearance of the Cambrian fauna. Report of the Session of the International Geological Congress, Stockholm, 1910:547559.Google Scholar
Maynard Smith, J. 1978. The Evolution of Sex. Cambridge University Press, Cambridge, 242 p.Google Scholar
Maynard Smith, J., and Szathmáry, E. 1995. The Major Transitions in Evolution. Freeman, Oxford, 346 p.Google Scholar
McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S. 1994. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta, 58:529532.Google Scholar
McClintock, J. B. 1987. Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament, and toxicity of benthic sponges at McMurdo Sound, Antarctica. Marine Biology, 94:479487.Google Scholar
McFadden, G. I., Gilson, P. R., Hofmann, C. J. B., Adcock, G. J., and Maier, U. G. 1994. Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proceedings of the National Academy of Sciences, 91:36903694.Google Scholar
McIlroy, D., and Logan, G. A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic—Cambrian transition. Palaios, 14:5872.Google Scholar
McIlroy, D., and Szaniawski, H. 2000. A lower Cambrian protoconodont apparatus from the Placentian of southeastern Newfoundland. Lethaia, 33:95102.Google Scholar
McMenamin, M. A. S. 1986. The garden of Ediacara. Palaios, 1:178182.Google Scholar
McMenamin, M. A. S., and Schulte McMenamin, D. L. 1990. The Emergence of Animals. Columbia University Press, New York, 217 p.Google Scholar
Mendelson, C. V., and Schopf, J. W. 1992a. Proterozoic and Early Cambrian acritarchs, p. 219232. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Mendelson, C. V., and Schopf, J. W. 1992b. Proterozoic and selected Early Cambrian microfossils and microfossil-like objects, p. 865951. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Menge, B. A. 1995. Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecological Monographs, 65:2174.Google Scholar
Miller, R. H., and Sundberg, F. A. 1984. Boring Late Cambrian organisms. Lethaia, 17:185190.Google Scholar
Missarzhevskij, V. V. 1973. Konodontoobraznye organizmy iz pogranichnykh sloev kembriya i dokembriya Sibirskoj platformy i Kazakhstana [Conodont-shaped organisms from the Precambrian–Cambrian boundary beds of the Siberian Platform and Kazakhstan], p. 5357. In Zhuravleva, I. T. (ed.), Problemy paleontologii i biostratigrafii nizhnego kembriya Sibiri i Dal'nego vostoka. Trudy Instituta Geologii i Geofiziki SO AN SSSR. (In Russian.) Google Scholar
Moczydlowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian—Cambrian boundary in southeastern Poland. Fossils and Strata, 29:1127.Google Scholar
Morey, G. B., and Southwick, D. L. 1995. Allostratigraphic relationships of Early Proterozoic iron-formations in the Lake Superior region. Economic Geology, 90:19831993.Google Scholar
Müller, K. J., and Walossek, D. 1985. A remarkable arthropod fauna from the Upper Cambrian “Orsten” of Sweden. Transactions of the Royal Society of Edinburgh. Earth Sciences, 76:161172.Google Scholar
Nedin, C. 1999. Anomalocaris predation on nonmineralized and mineralized trilobites. Geology, 27:987990.Google Scholar
Nicol, D. 1966. Cope's Rule and Precambrian and Cambrian invertebrates. Journal of Paleontology, 40:13971399.Google Scholar
Nielsen, C. 1985. Animal phylogeny in the light of the trochea theory. Biological Journal of the Linnean Society, 25:243299.CrossRefGoogle Scholar
Nielsen, C. 1995. Animal Evolution. Interrelationships of the Living Phyla. Oxford University Press, Oxford, 467 p.Google Scholar
Nielsen, C. 1998. Origin and evolution of animal life cycles. Biological Reviews, 73:125155.Google Scholar
Nikoh, N., Iwabe, N., Kuma, K. I., Ohno, M., Sugiyama, T., Watanabe, Y., Yasui, K., Shi-Cui, Z., Hori, K., Shimura, Y., and Miyata, T. 1997. An estimate of divergence time of parazoa and eumetazoa and that of cephalochordata and vertebrata by aldolase and triose phosphate isomerase clocks. Journal of Molecular Evolution, 45:97106.Google Scholar
Oshel, P. E., and Steele, D. H. 1985. Amphipod Paramphithoe hystrix: a micropredator on the sponge Haliclona ventilabrum. Marine Ecology Progress Series, 23:307309.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology, 27:583601.Google Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature, 416:420424.Google Scholar
Peterson, K. J., Cameron, R. A., and Davidson, E. H. 1997. Set-aside cells in maximal indirect development: evolutionary and developmental significance. BioEssays, 19:623631.Google Scholar
Peterson, K. J., and Davidson, E. H. 2000. Regulatory evolution and the origin of the bilaterians. Proceedings of the National Academy of Sciences, 97:44304433.Google Scholar
Pickerill, R. K., and Blissett, D. 1999. A predatory Rusophycus burrow from the Cambrian of southern New Brunswick, eastern Canada. Atlantic Geology, 35:179183.Google Scholar
Pierson, B. K., Bauld, J., Castenholz, R. W., D'Amelio, E., Des Marais, D. J., Farmer, J. D., Grotzinger, J. P., Barker Jørgensen, B., Nelson, D. C., and Palmisano, A. C. 1992. Modern mat-building microbial communities: a key to the interpretation of Proterozoic stromatolitic communities, p. 245342. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Pocock, K. J. 1974. A unique case of teratology in trilobite segmentation. Lethaia, 7:6366.Google Scholar
Porter, K. G. 1977. The plant-animal interface in freshwater systems. American Scientist, 65:159170.Google Scholar
Porter, S., and Knoll, A. H. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 26:360385.Google Scholar
Pratt, B. R. 1982. Stromatolite decline—a reconsideration. Geology, 10:512515.Google Scholar
Pratt, B. R. 1998. Probable predation on Upper Cambrian trilobites and its relevance for the extinction of soft-bodied Burgess Shale-type animals. Lethaia, 31:7388.Google Scholar
Rasmussen, B., Bengtson, S., Fletcher, I. R., and McNaughton, N. 2002. Discoidal impressions and trace-like fossils more than 1200 million years old. Science, 296:11121115.Google Scholar
Raup, D. J. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology, 2:279288.Google Scholar
Raup, D. J. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology, 2:289297.Google Scholar
Richards, M. G., Huxham, M., and Bryant, A. 1999. Predation: a causal mechanism for variability in intertidal bivalve populations. Journal of Experimental Marine Biology and Ecology, 241:159177.Google Scholar
Riding, R. 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47:179214.Google Scholar
Rieger, R. M., and Sterrer, W. 1975. New spicular skeletons in Turbellaria, and the occurrence of spicules in marine meiofauna. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 13:207278.Google Scholar
Roger, A. J. 1999. Reconstructing early events in eukaryotic evolution. American Naturalist, 154:146163.Google Scholar
Runnegar, B. 1982. A molecular-clock date for the origin of the animal phyla. Lethaia, 15:199205.Google Scholar
Runnegar, B. 1994. Proterozoic eukaryotes: evidence from biology and geology, p. 287297. In Bengtson, S. (ed.), Early Life on Earth. Nobel Symposium 84, Columbia University Press, New York.Google Scholar
Runnegar, B. 2000. Loophole for snowball Earth. Nature, 405:403404.Google Scholar
Rydell, J., Hammarlund, J., and Seilacher, A. 2001. Trace fossil association in the Swedish Mickwitzia Sandstone (Lower Cambrian): Did trilobites really hunt for worms? Geologiska Föreningens i Stockholm Förhandlingar, 123:247250.Google Scholar
Samuelsson, H., Dawes, P. R., and Vidal, G. 1999. Acid-resistant palynomorphs from the Proterozoic Thule Group, northwest Greenland. Precambrian Research, 96:123.Google Scholar
Schoener, T. W., Spiller, D. A., and Losos, J. B. 2001. Predators increase the risk of catastrophic extinction of prey populations. Nature, 412:183186.Google Scholar
Schopf, J. W. 1999. Cradle of Life: The Discovery of Earth's Earliest Fossils. Princeton University Press, Princeton, NJ, 367 p.Google Scholar
Schopf, J. W., Haugh, B. N., Molnar, R. E., and Satterthwait, D. F. 1973. On the development of metaphytes and metazoans. Journal of Paleontology, 47:19.Google Scholar
Schopf, J. W., and Oehler, D. Z. 1976. How old are the eukaryotes? Science, 193:4749.Google Scholar
Schrag, D. P., and Hoffman, P. F. 2001. Life, geology and snowball Earth. Nature, 409:306.Google Scholar
Schubert, J. K., and Bottjer, D. J. 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology, 20:883886.Google Scholar
Scudo, F. M. 1996. Symbiosis, the origins of major life forms and systematics: A review with speculations. Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 27:95108.Google Scholar
Seilacher, A. 1956. Der Beginn des Kambriums als biologische Wende. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 103:155180.Google Scholar
Seilacher, A., Bose, P. K., and Pflüger, F. 1998. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science, 282:8083.Google Scholar
Semikhatov, M. A., and Raaben, M. E. 2000. Proterozoic stromatolite taxonomy and biostratigraphy, p. 295306. In Riding, R. and Awramik, S. M. (eds.), Microbial Sediments. Springer, Heidelberg.Google Scholar
Sepkoski, J. J. Jr. 1996. Competition in macroevolution: The Double Wedge revisited, p. 211255. In Jablonski, D., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Shapiro, J. A. 1988. Bacteria as multicellular organisms. Scientific American, 258:8289.Google Scholar
Shimkets, L. J. 1990. Social and developmental biology of myxobacteria. Microbiological Reviews, 54:473501.Google Scholar
Signor, P. W., and Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology, 20:297319.Google Scholar
Smetacek, V. 2001. A watery arms race. Nature, 411:745.Google Scholar
Stanley, S. M. 1973a. An ecological theory for the sudden origin of multicellular life in the Late Precambrian. Proceedings of the U.S. National Academy of Sciences, 70:14861489.Google Scholar
Stanley, S. M. 1973b. An explanation for Cope's rule. Evolution, 27:126.Google Scholar
Stanley, S. M. 1976a. Fossil data and the Precambrian—Cambrian evolutionary transition. American Journal of Science, 276:5676.Google Scholar
Stanley, S. M. 1976b. Ideas on the timing of metazoan diversification. Paleobiology, 2:209219.Google Scholar
Steele, J. H. 1974. The Structure of Marine Ecosystems. Harvard University Press, Cambridge, MA, 128 p.Google Scholar
Steneck, R. S., Miller, T. E., Reid, R. P., and Macintyre, I. G. 1998. Ecological controls on stromatolite development in a modern reef environment: a test of the ecological refuge paradigm. Carbonates and Evaporites, 13:4865.Google Scholar
Streng, M. 1999. Early Middle Cambrian representatives of the superfamily Acrotretoidea (Brachiopoda) from Morocco. Zeitschrift der deutschen geologischen Gesellschaft, 150:2787.Google Scholar
Summons, R., Jahnke, L. L., Hope, J. M., and Logan, G. A. 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400:554557.Google Scholar
Szaniawski, H. 1982. Chaetognath grasping spines recognized among Cambrian protoconodonts. Journal of Paleontology, 56:806810.Google Scholar
Szaniawski, H. 2002. New evidence for the protoconodont origin of chaetognaths. Acta Palaeontologica Polonica, in press.Google Scholar
Telford, M. J., and Holland, P. W. H. 1993. The phylogenetic affinities of the chaetognaths: a molecular analysis. Molecular Biology and Evolution, 10:660676.Google Scholar
Telford, M. J., and Holland, P. W. H. 1997. Evolution of 28S ribosomal DNA in chaetognaths: duplicate genes and molecular phylogeny. Journal of Molecular Evolution, 44:135144.Google Scholar
Theimer, T. C., and Bateman, G. C. 1992. Patterns of prickly-pear herbivory by collared peccaries. Journal of Wildlife Management, 56:234240.Google Scholar
Thompson, J. N. 1998. Rapid evolution as an ecological process. Trends in Ecology and Evolution, 13:329332.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice Hall, Englewood Cliffs, NJ, 511 p.Google Scholar
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development, 126:851859.Google Scholar
Verity, P. G., and Smetacek, V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Marine Ecology Progress Series, 130:277293.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation. An Ecological History of Life. Princeton University Press, Princeton, NJ, 527 p.Google Scholar
Vermeij, G. J. 1990. The origin of skeletons. Palaios, 4:585589.Google Scholar
Vermeij, G. J. 1994. The evolutionary interaction among species: selection, escalation and coevolution. Annual Review of Ecology and Systematics, 25:219236.Google Scholar
Vermeij, G. J. 2002. Evolution in the consumer age: Predators and the history of life. In Kowalewski, M. and Kelley, P. H. (eds.), The Fossil Record of Predation, Paleontological Society Special Papers, 8 (this volume).Google Scholar
Vidal, G., and Moczydlowska, M. 1992. Patterns of radiation in the phytoplankton across the Precambrian—Cambrian boundary. Journal of the Geological Society, London, 149:647654.Google Scholar
Vidal, G., and Moczydlowska-Vidal, M. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology, 23:230246.Google Scholar
Vreeland, H. V., and Lasker, H. R. 1989. Selective feeding of the polychaete Hermodice carunculata Pallas on Caribbean gorgonians. Journal of Experimental Marine Biology and Ecology, 129:265277.Google Scholar
Wada, H., and Satoh, N. 1994. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proceedings of the National Academy of Sciences, USA, 91:18011804.Google Scholar
Waddell, B., and Pawlik, J. R. 2000a. Defenses of Caribbean sponges against invertebrate predators, I: Assays with hermit crabs. Marine Ecology Progress Series, 195:125132.Google Scholar
Waddell, B., and Pawlik, J. R. 2000b. Defenses of Caribbean sponges against invertebrate predators, II: Assays with sea stars. Marine Ecology Progress Series, 195:133144.Google Scholar
Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gosline, J. M. 1976. Mechanical Design in Organisms. Edward Arnold, London, 423 p.Google Scholar
Walcott, C. D. 1920. Cambrian geology and paleontology IV:6—Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67:261364.Google Scholar
Walter, M. R. 1994. Stromatolites: The main geological source of information on the evolution of the early benthos, p. 270286. In Bengtson, S. (ed.), Early Life on Earth. Columbia University Press, New York.Google Scholar
Walter, M. R., Bauld, J., Des Marais, D., and Schopf, J. W. 1992a. A general comparison of microbial mats and microbial stromatolites: Bridging the gap between the modern and the fossil, p. 335338. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Walter, M. R., Grotzinger, J. P., and Schopf, J. W. 1992b. Proterozoic stromatolites, p. 253260. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Walter, M. R., and Heys, G. R. 1985. Links between the rise of the Metazoa and the decline of the stromatolites. Precambrian Research, 29:149174.Google Scholar
Walther, B. T. 2000. Do life's three domains mirror the origins of sex? Journal of Biosciences, 25:1720.Google Scholar
Wang, D. Y. C., Kumar, S., and Hedges, S. B. 1999. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proceedings of the Royal Society of London B, 266:163171.Google Scholar
Ward, D. M., Bauld, J., Castenholz, R. W., and Person, B. K. 1992. Modern phototrophic microbial mats: anoxygenic, intermittently oxygenic/anoxygenic, thermal, eukaryotic and terrestrial, p. 309324. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
West, J. M. 1997. Plasticity in the sclerites of a gorgonian coral: tests of water motion, light level, and damage cues. Biological Bulletin, 192:279289.Google Scholar
West, J. M. 1998. The dual role of sclerites in a gorgonian coral: conflicting functions of support and defence. Evolutionary Ecology, 12:803821.Google Scholar
Whalen, M. T., Eberli, G. P., and Homewood, P. W. 1998. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Upper Devonian, Alberta Basin, Canada. Geological Society of America Abstracts with Programs, 30:195.Google Scholar
Whittington, H. B., and Briggs, D. E. G. 1982. A new conundrum from the Middle Cambrian Burgess Shale. Third North American Paleontological Convention, Proceedings, 2:573574.Google Scholar
Williams, G. C. 1975. Sex and Evolution. Princeton University Press, Princeton, NJ, 210 p.Google Scholar
Wilson, W. H. 1990. Competition and predation in marine soft-sediment communities. Annual Review of Ecology and Systematics, 21:221241.Google Scholar
Woodin, S. A. 1983. Biotic interactions in Recent marine sedimentary environments, p. 338. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossils Benthic Communities. Plenum, New York.Google Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep pre-Cambrian divergences among metazoan phyla. Science, 274:568573.Google Scholar
Xiao, S., and Knoll, A. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, south China. Journal of Paleontology, 74:767788.Google Scholar
Xiao, S., Zhang, Y. and Knoll, A. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.Google Scholar
Yue, Z., and Bengtson, S. 1999. Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides. Lethaia, 32:181195.Google Scholar
Zang, W., and Walter, M. R. 1989. Latest Proterozoic plankton from the Amadeus Basin in Central Australia. Nature, 337:642645.Google Scholar
Zang, W., and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Memoirs of the Association of Australasian Palaeontologists, 12:1132.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, south China. Journal of Paleontology, 72:152.Google Scholar
Zhang, X.-G., and Pratt, B. 1994. Middle Cambrian arthropod embryos with blastomeres. Science, 266:637639.Google Scholar
Zhuravlev, A. Yu. 2001. Biotic diversity and structure during the Neoproterozoic—Ordovician transition, p. 173199. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Zhuravlev, A. Yu., and Debrenne, F. 1996. Pattern of evolution of Cambrian benthic communities: Environments of carbonate sedimentation. Rivista Italiana di Paleontologia e Stratigrafia, 102:333340.Google Scholar
Zhuravlev, A. Yu., and Riding, R. (eds.). 2001. The Ecology of the Cambrian Radiation: Perspectives in Paleobiology and Earth History. Columbia University Press, New York., 525 p.Google Scholar
Zhu, S., Sun, S., Huang, X., He, Y., Zhu, G., Sun, L., and Zhang, K. 2000. Discovery of carbonaceous compressions and their multicellular tissues from the Changzhougou Formation (1800 Ma) in the Yanshan Range, North China. Chinese Science Bulletin, 45:841847.Google Scholar