Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T15:26:52.897Z Has data issue: false hasContentIssue false

The Use of Mg/Ca as a Seawater Temperature Proxy

Published online by Cambridge University Press:  21 July 2017

Tim K. Lowenstein
Affiliation:
Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, NY 13902 USA. lowenst@binghamton.edu
Bärbel Hönisch
Affiliation:
Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 USA. hoenisch@ldeo.columbia.edu
Get access

Abstract

The underlying basis for Mg/Ca paleothermometry is that the amount of magnesium in calcite precipitated from seawater is dependent on temperature. Here we review the state of the art of the Mg/Ca seawater paleotemperature proxy, summarized by the following: 1) Calcite, whether formed abiotically or biologically as foraminifera and ostracode shells, incorporates variable amounts of magnesium into the crystal structure. 2) Uptake of Mg varies positively with temperature. 3) The relationship between temperature and the amount of Mg in calcite has been quantified by experiments on synthetic calcite growth and by culture, core top, and sediment trap experiments using living organisms. 4) The most careful calibrations of the Mg/Ca paleothermometer have been done for planktic foraminifera, then benthic foraminifera; there are species-specific variations in the amount of Mg incorporated into foraminifera shells. 5) The Mg/Ca ratio of calcite from planktic foraminifera in deep-sea cores has been widely used to interpret sea surface temperatures. 6) Measurement of both Mg/Ca and δ18O in planktic foraminifera have been used to calculate δ18O in seawater, and after correction for global ice volume, salinity could be inferred. 7) Mg/Ca from benthic foraminifera have been used to reconstruct deep-sea temperatures and cooling of ~12° over the last 50 million years. 8) One problem with the Mg/Ca seawater temperature proxy is partial dissolution of foraminifer shells, which lowers the Mg/Ca, and leads to an underestimation of ocean temperature. Benthic foraminifers appear to be more resistant to partial dissolution. 9) Past changes in the Mg/Ca ratio of seawater are an important factor in determining the amount of Mg in fossil skeletal calcite, and thus add another variable to the Mg/Ca temperature proxy. All Mg/Ca paleotemperature studies on fossil calcite older than Pleistocene should take into account the Mg/Ca of the seawater from which it precipitated.

Type
Research Article
Copyright
Copyright © 2012 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, P., Elderfield, H., and Conte, M. H. 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18(2):1050 doi:10.1029/2002PA000846.Google Scholar
Arbuszewski, J., deMenocal, P., Kaplan, A., and Farmer, E. C. 2010, On the fidelity of shell-derived δ18O seawater estimates. Earth and Planetary Science Letters, 300:185196.Google Scholar
Berger, W. H., Bonneau, M.-C., and Parker, F. L. 1982. Foraminifera on the deep-sea floor: lysocline and dissolution rate, Oceanologica Acta, 5:249258.Google Scholar
Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K.-U., and Norris, R. D. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations, Paleoceanography, 21, PA2002, doi:10.1029/2005PA001203.Google Scholar
Brennan, S. T., Lowenstein, T. K., and Cendón, D. I. in revision. The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite. American Journal of Science.Google Scholar
Chave, K. E. 1954. Aspects of the biogeochemistry of magnesium: 1. Calcareous marine organisms. Journal of Geology, 62:266283.Google Scholar
Chivas, A. R., DeDeckker, P., and Shelley, J. M. G. 1986. Magnesium content of non-marine ostracode shells: a new palaeosalinometer and palaeothermometer: Palaeogeography Palaeoclimatology Palaeoecology, 54:4361.Google Scholar
Cronin, T. M., Dwyer, G. S., Kamiya, T., Schwede, S., and Willard, D. A. 2003. Medieval Warm Period, Little Ice Age and 20th Century temperature variability from Chesapeake Bay. Global and Planetary Change, 36:1729.CrossRefGoogle Scholar
Dekens, P. S., Lea, D. W., Pak, D. K., and Spero, H. J. 2002. Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochemistry Geophysics Geosystems, 3:1022. doi:10.1029/2001GC000200.Google Scholar
Dueñas-Bohórquez, A., da Rocha, R. E., Kuroyanagi, A., Bijma, J., and Reichart, G. J. 2009. Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic foraminifera. Marine Micropaleontology, 73:178189.Google Scholar
Dueñas-Bohórquez, A., da Rocha, R. E., Kuroyanagi, A., de Nooijer, L. J., Bijma, J., and Reichart, G. J. 2011. Interindividual variability and ontogenetic effects on Mg and Sr incorporation in the planktonic foraminifer Globigerinoides sacculifer . Geochimica et Cosmochimica Acta, 75:520532.Google Scholar
Dwyer, G. S., Cronin, T. M., Baker, P.A., Raymo, M. E., Buzas, J. S., and Correge, T. 1995. North Atlantic deepwater temperature change during Late Pliocene and Late Quaternary climatic cycles. Science, 270:13471351.Google Scholar
Eggins, S. M., Sadekov, A., and De Deckker, P. 2004. Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: a complication for seawater thermometry? Earth and Planetary Science Letters, 225:411419.Google Scholar
Eggins, S. M., Hönisch, B., Doo, S., Vetter, L., Allen, K. A., Spero, H. J., and Russell, A. D. 2010. Reduced temperature sensitivity of foraminiferal Mg/Ca seawater thermometry in ancient oceans. Eos Transactions of The American Geophysical Union Ocean Science Meeting Supplement, 91:26 Abstract PA31A-08.Google Scholar
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B. 2006. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth and Planetary Sciences Letters, 250:633649.Google Scholar
Elderfield, H., Greaves, M., Barker, S., Hall, I. R., Tripati, A., Ferretti, P., Crowhurst, S., Booth, L., and Daunt, C. 2010. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quaternary Science Reviews, 29:160169.CrossRefGoogle Scholar
Hardie, L. A. 1996. Secular variation in seawater chemistry: an explanation for the coupled variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology, 24:279283.Google Scholar
Hasiuk, F. J., and Lohmann, K. C. 2008. Reconciled: Secular variation in ocean Mg/Ca and Mg/Ca paleothermometry in foraminifera. Geological Society of America Abstracts with Programs, 40(6):201.Google Scholar
Hetzinger, S., Halfar, J., Kronz, A., Steneck, R., Adey, W., Lebednik, P., and Schöne, B. R. 2009. High-resolution Mg/Ca ratios in a coralline red algae as a proxy for Bering Sea temperature variations. Palaios, 24:406412.Google Scholar
Hönisch, B., and Hemming, N. G. 2004. Groundtruthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects. Paleoceanography, 19:PA4010. doi:10.1029/2004PA001026.Google Scholar
Hortia, J., Zimmermann, H., and Holland, H. D. 2002. The chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66:37333756.Google Scholar
Kamenos, N., Cusack, M., and Moore, P. G. 2008. Coralline algae are global paleothermometers with bi-weekly resolution. Geochimica et Cosmochimica Acta, 72:771779.Google Scholar
Kisakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D., and Erez, J. 2008. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth and Planetary Science Letters, 273:260269.Google Scholar
Lea, D. W., Mashiotta, T. A., and Spero, H. J. 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta, 63:23692379.CrossRefGoogle Scholar
Lea, D. W., Pak, D. K., and Spero, H. J. 2000. Climate impact of late Quaternary equatorial Pacific sea-surface temperature variations. Science. 289:17191724.Google Scholar
Lea, D. W. 2003. Elemental and isotopic proxies of past ocean temperatures, pp. 365390 In Elderfield, H. (ed.). The Oceans and Marine Geochemistry, Volume 6, Treatise on Geochemistry. Elsevier, New York.Google Scholar
Lear, C. H., Elderfield, H., and Wilson, P. A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287:269272.Google Scholar
Lear, C. H., Rosenthal, Y., and Slowey, N. 2002. Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration. Geochimica et Cosmochimica Acta, 66:33753387.Google Scholar
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y. 2008. Cooling and ice growth across the Eocene-Oligocene transition. Geology, 36:251254.Google Scholar
Lorens, R. B., Williams, D. F., and Bender, M. L. 1977. The early nonstructural chemical diagenesis of foraminiferal calcite. Journal of Sedimentary Petrology, 47:16021609.Google Scholar
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V. 2001. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions in salt deposits. Science, 294:10861088.Google Scholar
Lowenstein, T. K., Hardie, L. A., Timofeeff, M. N., and Demicco, R. V. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31:857860.Google Scholar
Mucci, A. 1987. Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochimica et Cosmochimica Acta, 51:19771984.Google Scholar
Nürnberg, D. 2000. Taking the temperature of past ocean surfaces. Science, 289:16981699.Google Scholar
Oomori, T., Kaneshima, H., Maezato, Y., and Kitano, Y. 1987. Distribution coeffcient of Mg2+ ions betweeen calcite and solution at 10–50 °C. Marine Chemistry, 20:327336.Google Scholar
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. 2001. Warm tropical sea surface temperatures in the late Cretaceous and Eocene epochs. Nature, 413:481487.Google Scholar
Ridgwell, A., and Schmidt, D. N. 2010 Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geoscience, 3:196200.Google Scholar
Russell, A. D., Hönisch, B., Spero, H. J., and Lea, D. W. 2004. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 68:43474361.Google Scholar
Sadekov, A. Y., Eggins, , and De Deckker, P. 2005. Characterization of Mg/Ca distributions in planktonic foraminifera species by electron microprobe mapping. Geochemistry Geophysics Geosystems, 6:Q12P06. doi:10.1029/2005GC000973.Google Scholar
Segev, E., and Erez, J. 2006. Effect of Mg/Ca ratio in seawater on shell composition in shallow benthic foraminifera. Geochemistry Geophysics Geosystems, 7:Q02P09. doi:10.1029/2005GC000969.Google Scholar
Timofeeff, M. N., Lowenstein, T. K. Silva, M. A. M., and Harris, N. B. 2006. Secular variations in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochimica et Cosmochimica Acta, 70:19771994.Google Scholar
Walter, L. M., and Morse, J. W. 1985. The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study. Geochimica et Cosmochimica Acta, 49:15031513.Google Scholar
Weber, J. N. 1969, The incorporation of magnesium into the skeletal calcites of echinoderms. American Journal of Science 267, 537566.Google Scholar