Skip to main content Accessibility help

Burgess Shale-type Preservation and its Distribution in Space and Time

  • Robert R. Gaines (a1)


Burgess Shale-type fossil assemblages provide a unique record of animal life in the immediate aftermath of the so-called “Cambrian explosion.” While most soft-bodied faunas in the rock record were conserved by mineral replication of soft tissues, Burgess Shale-type preservation involved the conservation of whole assemblages of soft-bodied animals as primary carbonaceous remains, often preserved in extraordinary anatomical detail. Burgess Shale-type preservation resulted from a combination of influences operating at both local and global scales that acted to drastically slow microbial degradation in the early burial environment, resulting in incomplete decomposition and the conservation of soft-bodied animals, many of which are otherwise unknown from the fossil record. While Burgess Shale-type fossil assemblages are primarily restricted to early and middle Cambrian strata (Series 2–3), their anomalous preservation is a pervasive phenomenon that occurs widely in mudstone successions deposited on multiple paleocontinents. Herein, circumstances that led to the preservation of Burgess Shale-type fossils in Cambrian strata worldwide are reviewed. A three-tiered rank classification of the more than 50 Burgess Shale-type deposits now known is proposed and is used to consider the hierarchy of controls that regulated the operation of Burgess Shale-type preservation in space and time, ultimately determining the total number of preserved taxa and the fidelity of preservation in each deposit. While Burgess Shale-type preservation is a unique taphonomic mode that ultimately was regulated by the influence of global seawater chemistry upon the early diagenetic environment, physical depositional (biostratinomic) controls are shown to have been critical in determining the total number of taxa preserved in fossil assemblages, and hence, in regulating many of the important differences among Burgess Shale-type deposits.



Hide All
Aitken, J. 1971. Control of lower Paleozoic sedimentary facies by the Kicking Horse Rim, southern Rocky Mountains, Canada. Bulletin of Canadian Petroleum Geology, 19:557569.
Aitken, J. D. 1997. Stratigraphy of the Middle Cambrian platformal succession, southern Rocky Mountains. Geological Survey of Canada Bulletin 398, 322 p.
Alessandrello, A., and Bracchi, G. 2003. Eldonia berbera n. sp., a new species of the enigmatic genus Eldonia Walcott, 1911 from the Rawtheyan (Upper Ordovician) of Anti-Atlas (Erfoud, Tafilalt, Morocco). Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 144:337358.
Allison, P. A. 1986. Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport. Geology, 14:979981.
Allison, P. A. 1988. The role of anoxia in the decay and mineralization of protienaceous macro-fossils. Paleobiology, 14:139154.
Allison, P. A., and Brett, C. E. 1995. In situ benthos and paleo-oxygenation in the middle Cambrian Burgess Shale, British Columbia, Canada. Geology, 23:10791082.
Allison, P. A., and Briggs, D. E. G. 1993. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology, 21:527530.
Allison, P. A., and Briggs, D. E. G. 1994. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic—Reply. Geology, 22:184184.
Aronson, R. B. 1993. Burgess Shale-type biotas were not just burrowed away: Reply. Lethaia, 26:185185.
Berner, R. A. 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48:605615.
Berner, R. A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 . Geochimica et Cosmochimica Acta, 70:56535664.
Brasier, M. D., and Lindsay, J. F. 2001. Did supercontinental amalgamation trigger the “Cambrian Explosion?” p. 6989. In Zhuravlev, A. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.
Brennan, S. T., Lowenstein, T. K., and Horita, J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32:473476.
Brett, C. E., Allison, P. A., DeSantis, M. K., Liddell, W. D., and Kramer, A. 2009. Sequence stratigraphy, cyclic facies, and Lagerstätten in the middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:933.
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301.
Briggs, D. E. G., Bottrell, S. H., and Raiswell, R. 1991. Pyritization of soft-bodied fossils: Beecher's Trilobite Bed, Upper Ordovician, New York State. Geology, 19:12211224.
Briggs, D. E. G., Erwin, D. H., Collier, F. J., and Clark, C. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, D. C.
Briggs, D. E. G., and Fortey, R. A. 2005. Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology, 31:94112.
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science, 256:16701673.
Briggs, D. E. G., and Kear, A. J. 1994. Decay and mineralization of shrimps. PALAIOS, 9:431456.
Briggs, D. E. G., Lieberman, B. S., Hendricks, J. R., Halgedahl, S. L., and Jarrard, R. D. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82:238254.
Briggs, D. E. G., and Nedin, C. 1997. The taphonomy and affinities of the problematic fossil Myoscolex from the lower Cambrian Emu Bay shale of south Australia. Journal of Paleontology, 71:2232.
Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D., and Bartels, C. 1996. Controls on the pyritization of exceptionally preserved fossils: An analysis of the Lower Devonian Hunsruck Slate of Germany. American Journal of Science, 296:633663.
Budd, G. E. 2011. Campanamuta mantonae gen. et. sp. nov., an exceptionally preserved arthropod from the Sirius Passet Fauna (Buen Formation, lower Cambrian, North Greenland). Journal of Systematic Palaeontology, 9:217260.
Budd, G. E., and Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews of the Cambridge Philosophical Society, 75:253295.
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369:477479.
Butterfield, N. J. 1995. Secular distribution of Burgess Shale-type preservation. Lethaia, 28:113.
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28:155171.
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology, 43:166177.
Butterfield, N. J. 2009. Fossil preservation in the Burgess Shale, p. 6369. In Caron, J.-B. and Rudkin, D. M. (eds), A Burgess Shale Primer: History, Geology, and Research Highlights. Burgess Shale Consortium, Toronto.
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543.
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 326:109117.
Canfield, D. E., Raiswell, R., and Bottrell, S. 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292:659683.
Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G., and Streng, M. 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications 5, article number 3210: doi: 10.1038/ncomms4210
Caron, J.-B., Gaines, R. R., Mángano, M. G., Streng, M., and Daley, A. C. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology, 38:811814.
Caron, J. B., and Jackson, D. A. 2006. Taphonomy of the Greater Phyllopod Bed community, Burgess Shale. PALAIOS, 21:451465.
Caron, J. B., and Jackson, D. A. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:222256.
Collins, D., Briggs, D., and Morris, S. C., 1983. New Burgess Shale fossil sites reveal middle Cambrian faunal complex. Science, 222:163167.
Conway Morris, S. 1986. The community structure of the middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology, 29:423467.
Conway Morris, S. 1989a. Burgess Shale-type faunas and the Cambrian explosion. Science, 246:339346.
Conway Morris, S. 1989b. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 80:271283.
Curtin, L. G., and Gaines, R. R. 2011. Burgess Shale-type preservation and detrital clay mineralogy: a test of the “reactive clay” hypothesis. Geological Society of America Abstracts with Programs, 43(5): 108.
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the United States of America, 107:1791117915.
Dornbos, S. Q., Bottjer, D. J., and Chen, J.-y. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:4767.
Droser, M. L., and Bottjer, D. J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology, 16:233236.
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation: Implications for understanding early Paleozoic ecospace utilization. Geology, 17:850852.
Elrick, M., and Snider, A. C. 2002. Deep-water stratigraphic cyclicity and carbonate mud mound development in the Middle Cambrian Marjum Formation, House Range, Utah, USA. Sedimentology, 49:10211047.
English, A. M., and Babcock, L. E. 2010. Census of the Indian Springs Lagerstätte, Poleta Formation (Cambrian), western Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 295:236244.
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:109110977.
Farrell, Ú. C. 2014. Pyritization of soft tissues in the fossil record: an overview, p. 3557. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.
Farrell, Ú. C., Briggs, D. E., Hammarlund, E. U., Sperling, E. A., and Gaines, R. R. 2013. Paleoredox and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York. American Journal of Science, 313:452489.
Fletcher, T. P., and Collins, D. H. 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences, 35:413436.
Fletcher, T. P., and Collins, D. H. 2003. The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Canadian Journal of Earth Sciences, 40:18231838.
Forchielli, A., Steiner, M., Hu, S. X., and Keupp, H. 2012. Taphonomy of Cambrian (Stage 3/4) sponges from Yunnan (South China). Bulletin of Geosciences, 87:133142.
Forchielli, A., Steiner, M., Kasbohm, J., Hu, S., and Keupp, H. 2014. Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398:5985.
Gabbott, S. E., Xian-guang, H., Norry, M. J., and Siveter, D. J. 2004. Preservation of Early Cambrian animals of the Chengjiang biota. Geology, 32:901904.
Gabbott, S. E., Zalasiewicz, J., and Collins, D. 2008. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. Journal of the Geological Society, 165:307318.
Gaines, R. 2011. New Burgess Shale-type locality in the “thin” Stephen Formation, Kootenay National Park, British Columbia: stratigraphic and paleoenvironmental setting. Paleontographica Canadiana, 31:7288.
Gaines, R. R., Briggs, D. E., Orr, P. J., and Van Roy, P. 2012a. Preservation of giant anomalocaridids in silica-chlorite concretions from the Early Ordovician of Morocco. PALAIOS, 27:317325.
Gaines, R. R., Briggs, D. E., and Yuanlong, Z. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology, 36:755758.
Gaines, R. R., and Droser, M. L. 2002. Depositional environments, ichnology, and rare soft-bodied preservation in the Lower Cambrian Latham Shale, East Mojave, p. 153164. In Corsetti, F. A. (ed.), Proterozoic–Cambrian of the Great Basin and Beyond. SEPM, Tulsa.
Gaines, R. R., and Droser, M. L. 2003. Paleoecology of the familiar trilobite Elrathia kingii: An early exaerobic zone inhabitant. Geology, 31:941944.
Gaines, R., and Droser, M. L. 2005. New approaches to understanding the mechanics of Burgess Shale-type deposits: from the micron scale to the global picture. The Sedimentary Record, 3:48.
Gaines, R. R., and Droser, M. L. 2010. The paleoredox setting of Burgess Shale-type deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 297:649661.
Gaines, R. R., Droser, M. L., Orr, P. J., Garson, D., Hammarlund, E., Qi, C., and Canfield, D. E. 2012b. Burgess shale-type biotas were not entirely burrowed away. Geology, 40:283286.
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E. 2012c. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences of the United States of America, 109:51805184.
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E. 2012d. Reply to Butterfield: Low-sulfate and early cements inhibit decay and promote Burgess Shale-type preservation. Proceedings of the National Academy of Sciences of the United States of America, 109:E1902E1902.
Gaines, R. R., Kennedy, M. J., and Droser, M. L. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:193205.
Gaines, R. R., Mering, J. A., Zhao, Y. L., and Peng, J. 2011. Stratigraphic and microfacies analysis of the Kaili Formation, a candidate GSSP for the Cambrian Series 2–Series 3 boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 311:171183.
Gaines, R. R., Peters, S., Hammarlund, E., Briggs, D. E., Qi, C., Hou, X., Gabbott, S. E., and Canfield, D. E. 2013. The early Phanerozoic “taphonomic window.” Geological Society of America Abstracts with Programs, 45(7):306.
García-Bellido, D. C., and Aceñolaza, G. F. 2011. The worm Palaeoscolex from the Cambrian of NW Argentina: extending the biogeography of Cambrian priapulids to South America. Alcheringa: An Australasian Journal of Palaeontology, 35:531538.
García-Bellido, D. C., and Collins, D. H. 2006. A new study of Marrella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences, 43:721742.
Garson, D. E., Gaines, R. R., Droser, M. L., Liddell, W. D., and Sappenfield, A. 2012. Dynamic palaeoredox and exceptional preservation in the Cambrian Spence Shale of Utah. Lethaia, 45:164177.
Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H., and Saltzman, M. R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469:8083.
Gostlin, K. 2006. Sedimentology and Palynology of the Middle Cambrian Burgess Shale. PhD Thesis, University of Toronto, Toronto, Canada, 490 p.
Hagadorn, J. W. 2002. Burgess Shale-type localities: the global picture, p. 91116. In Bottjer, D., Etter, W., Hagadorn, J. W., and Tang, C. M. (eds.), Exceptional Fossil Preservation. Columbia University Press, New York.
Hagadorn, J. W., Dott, R. H., and Damrow, D. 2002. Stranded on a Late Cambrian shoreline: medusae from central Wisconsin. Geology, 30:147150.
Halgedahl, S. L., Jarrard, R. D., Brett, C. E., and Allison, P. A. 2009. Geophysical and geological signatures of relative sea level change in the upper Wheeler Formation, Drum Mountains, West-Central Utah: A perspective into exceptional preservation of fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:3456.
Hammarlund, E. 2007. The Ocean Chemistry at Cambrian Deposits with Exceptional Preservation & the Influence of Sulfate on Soft-tissue Decay. Master's Thesis, University of Southern Denmark, Odense, Denmark, 64 p.
Handle, K. C., and Powell, W. G. 2012. Morphologically simple enigmatic fossils from the Wheeler Formation: a comparison with definitive algal fossils. PALAIOS, 27:304316.
Henrichs, S. M., and Reeburgh, W. S. 1987. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal, 5:191237.
Hou, X.-G., Aldridge, R., Bergstrom, J., Siveter, D. J., Siveter, D., and Feng, X.-H. 2008. The Cambrian Fossils of Chengjiang, China: the Flowering of Early Animal Life. Blackwell Science Ltd., Maiden, MA.
Hu, S. 2005. Taphonomy and palaeoecology of the Early Cambrian Chengjiang biota from eastern Yunnan, China. Berliner Palaobiologische Abhandlungen, 7:182185.
Hu, S. X., Zhu, M. Y., Steiner, M., Luo, H. L., Zhao, F. C., and Liu, Q. 2010. Biodiversity and taphonomy of the Early Cambrian Guanshan biota, eastern Yunnan. Science China-Earth Sciences, 53:17651773.
Jørgensen, B. B. 1982. Mineralization of organic matter in the sea bed: the role of sulphate reduction. Nature, 296:643645.
Kimmig, J., and Pratt, B. 2013. Taphonomy of a new middle Cambrian (Series 3) fossil Lagerstätte from the Mackenzie Mountains, Northwestern Canada. Geological Society of America Abstracts with Programs, 45(7):307
Lee, C. 1992. Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochimica et Cosmochimica Acta, 56:33233335.
Lee, M. S. Y., Jago, J. B., García-Bellido, D. C., Edgecombe, G. D., Gehling, J. G., and Paterson, J. R. 2011. Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia. Nature, 474:631634.
Lerosey-Aubril, R., Gaines, R., Hegna, T., Ortega-Hernandez, J., Babcock, L. E., Lefebvre, B., Kier, C., Bonino, E., Sahratian, Q., and Vannier, J. 2013. The Weeks Formation Lagerstätte (House Range, Utah): a unique insight into the evolution of soft-bodied metazoans during the late Cambrian. Geological Society of America Abstracts with Programs, 45(7):454.
Lerosey-Aubril, R., Hegna, T. A., Kier, C., Bonino, E., Habersetzer, J., and Carre, M. 2012. Controls on gut phosphatisation: the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah). PLoS ONE, 7(3):e32934.
Liddell, W. D., Wright, S., and Brett, C. E. 1997. Sequence stratigraphy and paleoecology of the Middle Cambrian Spence Shale in northern Utah and southern Idaho. Brigham Young Geological Studies, 42:5978.
Lieberman, B. S. 2003. A new soft-bodied fauna: the Pioche Formation of Nevada. Journal of Paleontology, 77:674690.
Lin, J.-P., Zhao, Y.-L., Rahman, I. A., Xiao, S., and Wang, Y. 2010. Bioturbation in Burgess Shale-type Lagerstätten—case study of trace fossil-body fossil association from the Kaili Biota (Cambrian Series 3), Guizhou, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 292:245256.
Liu, H. P., McKay, R. M., Young, J. N., Witzke, B. J., McVey, K. J., and Liu, X. 2006. A new Lagerstätte from the Middle Ordovician St. Peter Formation in northeast Iowa, USA. Geology, 34:969.
Ma, X., Cong, P., Hou, X., Edgecombe, G. D., and Strausfeld, N. J. 2014. An exceptionally preserved arthropod cardiovascular system from the early Cambrian. Nature Communications 5, article 3560: doi:10.1038/ncomms4560
Ma, X., Hou, X., Edgecombe, G. D., and Strausfeld, N. J. 2012. Complex brain and optic lobes in an early Cambrian arthropod. Nature, 490:258–61.
Mángano, M. 2011. Trace-fossil assemblages in a Burgess Shale-type deposit from the Stephen Formation at Stanley Glacier, Canadian Rocky Mountains: unraveling ecologic and evolutionary controls, p. 89109. In Johnston, P. A. and Johnston, K. J. (eds.), Proceedings of the International Conference on the Cambrian Explosion. Palaeontographica Canadiana, 31.
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences, 34:355384.
McCoy, V. 2014. Concretions as agents of soft-tissue preservation: a review, p. 147161. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.
Minter, N. J., Mángano, M. G., and Caron, J. B. 2012. Skimming the surface with Burgess Shale arthropod locomotion. Proceedings of the Royal Society of London B-Biological Sciences, 279:16131620.
Orr, P. J., Benton, M. J., and Briggs, D. E. G. 2003. Post-Cambrian closure of the deep-water slope-basin taphonomic window. Geology, 31:769772.
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175.
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology, 36:855858.
Paterson, J. R., García-Bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B., and Edgecombe, G. D. 2011. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480:237240.
Peng, J., Zhao, Y., Wu, Y., Yuan, J., and Tai, T. 2005. The Balang Fauna—a new early Cambrian Fauna from Kaili City, Guizhou Province. Chinese Science Bulletin, 50:11591162.
Peters, S. E. 2009. The problem with the Paleozoic. Paleobiology, 33:165181.
Peters, S. E., and Gaines, R. R. 2012. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature, 484:363366.
Petrovich, R. 2001. Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. American Journal of Science, 301:683726.
Piper, D. J. W. 1972. Sediments of the Middle Cambrian Burgess Shale, Canada. Lethaia, 5:169175.
Poulton, S., and Canfield, D. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214:209221.
Powell, W. 2003. Greenschist-facies metamorphism of the Burgess Shale and its implications for models of fossil formation and preservation. Canadian Journal of Earth Sciences, 40:1325.
Powell, W. G., Johnston, P. A., and Collom, C. J. 2003. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 201:249268.
Raiswell, R., and Berner, R. A. 1986. Pyrite and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta 50:19671976.
Raiswell, R., Newton, R., Bottrell, S. H., Coburn, P. M., Briggs, D. E. G., Bond, D. P. G., and Poulton, S. W. 2008. Turbidite depositional influences on the diagenesis of Beecher's Trilobite Bed and the Hunsruck Slate; sites of soft tissue pyritization. American Journal of Science, 308:105129.
Rees, M. 1986. A fault-controlled trough through a carbonate platform: The Middle Cambrian House Range embayment. Geological Society of America Bulletin, 97:10541069.
Robison, R. 1991. Middle Cambrian biotic diversity: examples from four Utah Lagerstätten, p. 7798. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.
Robison, R. A. 1960. Lower and Middle Cambrian stratigraphy of the eastern Great Basin, p. 4352. In Boettcher, J. W. and Sloan, W. W. (eds.), Guidebook to the Geology of East Central Nevada, Eleventh Annual Field Conference of the Intermountain Association of Petroleum Geologists, Salt Lake City, Utah.
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463:797800.
Savrda, C. E., and Bottjer, D. J. 1986. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology, 14:36.
Savrda, C. E., Bottjer, D. J., and Gorsline, D. S. 1984. Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica, San Pedro, and Santa Barbara Basins, California Continental Borderland. AAPG Bulletin, 68:11791192.
Schiffbauer, J. D., Wallace, A. F., Broce, J., and Xiao, S. 2014. Exceptional fossil conservation through phosphatization, p. 5982. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.
Schwimmer, D. R., and Montante, W. M. 2007. Exceptional fossil preservation in the Conasauga Formation, Cambrian, northwestern Georgia, USA. PALAIOS, 22:360372.
Skinner, E. S. 2005. Taphonomy and depositional circumstances of exceptionally preserved fossils from the Kinzers Formation (Cambrian), southeastern Pennsylvania. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:167192.
Steiner, M., Zhu, M. Y., Zhao, Y. L., and Erdtmann, B. D. 2005. Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:129152.
Sun, H. J., Zhao, Y. L., Peng, J., and Yang, Y. N. 2013. New Wiwaxia material from the Tsinghsutung Formation (Cambrian Series 2) of Eastern Guizhou, China. Geological Magazine, 151:339348.
Tarhan, L. G., and Droser, M. L. 2014. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeography, Palaeoclimatology, Palaeoecology 399:310322.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232:1232.
Vaccari, N., Edgecombe, G., and Escudero, C. 2004. Cambrian origins and affinities of an enigmatic fossil group of arthropods. Nature, 430:554557.
Van Roy, P., and Briggs, D. E. G. 2011. A giant Ordovician anomalocaridid. Nature, 473:510513.
Van Roy, P., Orr, P. J., Botting, J. P., Muir, L. A., Vinther, J., Lefebvre, B., El Hariri, K., and Briggs, D. E. G. 2010. Ordovician faunas of Burgess Shale type. Nature, 465:215218.
von Bitter, P. H., Purnell, M. A., Tetreault, D. K., and Stott, C. A. 2007. Eramosa Lagerstätte—Exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada). Geology, 35:879882.
Walossek, D., and Müller, K. 1998. Cambrian ‘Orsten’-type arthropods and the phylogeny of Crustacea, p. 139153. In Forety, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. The Systematic Association Special Volume Series 55, Chapman and Hall, London.
Wang, W., Guan, C., Zhou, C., Wan, B., Tang, Q., Chen, X., Chen, Z., and Yuan, X. 2014. Exceptional preservation of macrofossils from the Ediacaran Lantian and Miahoe biotas, South China. PALAIOS, 29:129136.
Wang, Y., Zhao, Y., Lin, J., and Wang, P. 2004. Relationship between trace fossil Gordia and medusiform fossils Pararotadiscus from the Kaili Biota, Taijiang, Guizhou, and its significance. Geological Review, 50:113119.
Webster, M., Gaines, R. R., and Hughes, N. C. 2008. Microstratigraphy, trilobite biostratinomy, and depositional environment of the “Lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 264:100122.
Whittington, H. B. 1971. Redescription of Marrella splendens (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia. Bulletin Commission Geologique du Canada 209, Department of Energy, Mines and Resources, Ottowa.
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology, 20:93130.
Wilson, L. A. 2006. Food for Thought: A Morphological and Taphonomic Study of Fossilised Digestive Systems from Early to Middle Cambrian Taxa. PhD Thesis, University of Cambridge, Cambridge, 275 p.
Xiao, S., Droser, M., Gehling, J. G., Hughes, I. V., Wan, B., Chen, Z., and Yuan, X. 2013. Affirming life aquatic for the Ediacara biota in China and Australia. Geology, 41:10951098.
Zhang, X. G., Bergstrom, J., Bromley, R. G., and Hou, X. G. 2007a. Diminutive trace fossils in the Chengjiang Lagerstätte. Terra Nova, 19:407412.
Zhang, X. G., and Hou, X. G. 2007. Gravitational constraints on the burial of Chengjiang fossils. PALAIOS, 22:448453.
Zhang, X.-G., Hou, X.-G., and Bergstrom, J. A. N. 2006. Early Cambrian priapulid worms buried with their lined burrows. Geological Magazine, 143:743748.
Zhang, X. G., Siveter, D. J., Waloszek, D., and Maas, A. 2007b. An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature, 449:595598.
Zhao, F., Caron, J. B., Hu, S., and Zhu, M. 2009. Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstätte. PALAIOS, 24:826839.
Zhao, F. C., Hu, S. X., Caron, J. B., Zhu, M. Y., Yin, Z. J., and Lu, M. 2012. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 346:5465.
Zhao, Y. L., Zhu, M. Y., Babcock, L. E., Yuan, J. L., Parsley, R. L., Peng, J., Yang, X. L., and Wang, Y. 2005. Kaili Biota: a taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geologica Sinica-English Edition, 79:751765.
Zhu, M., Gehling, J. G., Xiao, S., Zhao, Y., and Droser, M. L. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36:867870.
Zhu, M.-Y., Zhang, J. M., and Li, G. X. 2001. Sedimentary environments of the Early Cambrian Chengjiang biota: Sedimentology of the Yu'anshan Foumation in Chengjiang County, eastern Yunnan. Acta Paleontologica Sinica, 40:80105.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Paleontological Society Papers
  • ISSN: 1089-3326
  • EISSN: 2399-7575
  • URL: /core/journals/the-paleontological-society-papers
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed