Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-rq46b Total loading time: 0.206 Render date: 2022-11-29T20:19:45.420Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue false

On a theory of probabilistic deductive databases

Published online by Cambridge University Press:  03 April 2001

LAKS V. S. LAKSHMANAN
Affiliation:
Department of Computer Science, Concordia University, Montreal, Canada K. R. School of Information Technology, IIT – Bombay, Mumbai, India (e-mail: laks@cs.concordia.ca)
FEREIDOON SADRI
Affiliation:
Department of Mathematical Sciences, University of North Carolina, Greensboro, NC, USA (e-mail: sadri@uncg.edu)

Abstract

We propose a framework for modeling uncertainty where both belief and doubt can be given independent, first-class status. We adopt probability theory as the mathematical formalism for manipulating uncertainty. An agent can express the uncertainty in her knowledge about a piece of information in the form of a confidence level, consisting of a pair of intervals of probability, one for each of her belief and doubt. The space of confidence levels naturally leads to the notion of a trilattice, similar in spirit to Fitting's bilattices. Intuitively, the points in such a trilattice can be ordered according to truth, information, or precision. We develop a framework for probabilistic deductive databases by associating confidence levels with the facts and rules of a classical deductive database. While the trilattice structure offers a variety of choices for defining the semantics of probabilistic deductive databases, our choice of semantics is based on the truth-ordering, which we find to be closest to the classical framework for deductive databases. In addition to proposing a declarative semantics based on valuations and an equivalent semantics based on fixpoint theory, we also propose a proof procedure and prove it sound and complete. We show that while classical Datalog query programs have a polynomial time data complexity, certain query programs in the probabilistic deductive database framework do not even terminate on some input databases. We identify a large natural class of query programs of practical interest in our framework, and show that programs in this class possess polynomial time data complexity, i.e. not only do they terminate on every input database, they are guaranteed to do so in a number of steps polynomial in the input database size.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
36
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On a theory of probabilistic deductive databases
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On a theory of probabilistic deductive databases
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On a theory of probabilistic deductive databases
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *