Skip to main content
×
Home
    • Aa
    • Aa

Applications of intuitionistic logic in Answer Set Programming

  • MAURICIO OSORIO (a1), JUAN A. NAVARRO (a2) and JOSÉ ARRAZOLA (a2)
Abstract

We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Theory and Practice of Logic Programming
  • ISSN: 1471-0684
  • EISSN: 1475-3081
  • URL: /core/journals/theory-and-practice-of-logic-programming
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: