Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T07:05:59.603Z Has data issue: false hasContentIssue false

ASP for minimal entailment in a rational extension of SROEL

Published online by Cambridge University Press:  14 October 2016

LAURA GIORDANO
Affiliation:
DISIT - Università del Piemonte Orientale, Alessandria, Italy (e-mail: laura.giordano@uniupo.it, dtd@di.unipmn.it)
DANIELE THESEIDER DUPRÉ
Affiliation:
DISIT - Università del Piemonte Orientale, Alessandria, Italy (e-mail: laura.giordano@uniupo.it, dtd@di.unipmn.it)

Abstract

In this paper we exploit Answer Set Programming (ASP) for reasoning in a rational extension SROEL (⊓,×)RT of the low complexity description logic SROEL(⊓, ×), which underlies the OWL EL ontology language. In the extended language, a typicality operator T is allowed to define concepts T(C) (typical C's) under a rational semantics. It has been proven that instance checking under rational entailment has a polynomial complexity. To strengthen rational entailment, in this paper we consider a minimal model semantics. We show that, for arbitrary SROEL(⊓,×)RT knowledge bases, instance checking under minimal entailment is ΠP2-complete. Relying on a Small Model result, where models correspond to answer sets of a suitable ASP encoding, we exploit Answer Set Preferences (and, in particular, the asprin framework) for reasoning under minimal entailment.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baader, F., Brandt, S. and Lutz, C. 2005. Pushing the ℰℒ envelope. In Proc IJCAI 2005, 364–369.Google Scholar
Baader, F. and Hollunder, B. 1995. Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. of Automated Reasoning 15, 1, 4168.Google Scholar
Bonatti, P. A., Faella, M., Petrova, I. and Sauro, L. 2015. A new semantics for overriding in description logics. Artif. Intell. 222, 148.Google Scholar
Bonatti, P. A., Faella, M. and Sauro, L. 2011. Defeasible inclusions in low-complexity dls. Journal of Artificial Intelligence Research (JAIR) 42, 719764.Google Scholar
Bonatti, P. A., Lutz, C. and Wolter, F. 2009. The Complexity of Circumscription in DLs. Journal of Artificial Intelligence Research (JAIR) 35, 717773.Google Scholar
Bonatti, P. A., Petrova, I. M. and Sauro, L. 2015. Optimizing the computation of overriding. In Proc. ISWC 2015, 356–372.Google Scholar
Booth, R., Casini, G., Meyer, T. and Varzinczak, I. J. 2015. On the entailment problem for a logic of typicality. In Proc. IJCAI 2015, 2805–2811.Google Scholar
Bozzato, L., Eiter, T. and Serafini, L. 2014. Contextualized knowledge repositories with justifiable exceptions. In DL 2014, 112–123.Google Scholar
Brewka, G., Delgrande, J. P., Romero, J. and Schaub, T. 2015. asprin: Customizing answer set preferences without a headache. In Proc. AAAI 2015, 1467–1474.Google Scholar
Britz, K., Heidema, J. and Meyer, T. 2008. Semantic preferential subsumption. In Proc. KR 2008, Brewka, G. and Lang, J., Eds. 476–484.Google Scholar
Casini, G., Meyer, T., Moodley, K. and Nortje, R. 2014. Relevant closure: A new form of defeasible reasoning for description logics. In JELIA 2014. LNCS 8761. Springer, 92106.Google Scholar
Casini, G., Meyer, T., Varzinczak, I. J. and Moodley, K. 2013. Nonmonotonic Reasoning in Description Logics: Rational Closure for the ABox. In Proc. DL 2013, 600–615.Google Scholar
Casini, G. and Straccia, U. 2010. Rational Closure for Defeasible Description Logics. In Proc. JELIA 2010, LNAI 6341. Springer, 7790.Google Scholar
Casini, G. and Straccia, U. 2012. Lexicographic closure for defeasible description logics. In Proc. Australasian Ontology Workshop, 28–39.Google Scholar
Donini, F. M., Nardi, D. and Rosati, R. 2002. Description logics of minimal knowledge and negation as failure. ACM Transactions on Computational Logic (ToCL) 3, 2, 177225.Google Scholar
Eiter, T., Gottlob, G. and Mannila, H. 1997. Disjunctive Datalog. ACM Trans. Database Syst. 22, 3, 364418.Google Scholar
Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R. and Tompits, H. 2008. Combining answer set programming with description logics for the semantic web. Artif. Intell. 172, 12–13, 14951539.Google Scholar
Gelfond, M. and Leone, N. 2002. Logic programming and knowledge representation - the A-Prolog perspective. Artif. Intell. 138, 1–2, 338.Google Scholar
Giordano, L., Gliozzi, V., Olivetti, N. and Pozzato, G. L. 2007. Preferential Description Logics. In Proceedings of LPAR 2007, LNAI, vol. 4790. Springer-Verlag, 257272.Google Scholar
Giordano, L., Gliozzi, V., Olivetti, N. and Pozzato, G. L. 2009a. ALC+T: a preferential extension of Description Logics. Fundamenta Informaticae 96, 132.CrossRefGoogle Scholar
Giordano, L., Gliozzi, V., Olivetti, N. and Pozzato, G. L. 2009b. Prototypical reasoning with low complexity description logics: Preliminary results. In Proc. LPNMR 2009, 430–436.Google Scholar
Giordano, L., Gliozzi, V., Olivetti, N. and Pozzato, G. L. 2011. Reasoning about typicality in low complexity DLs: the logics ℰℒ T min and DL-Litec T min . In Proc. IJCAI 2011, Barcelona, 894–899.Google Scholar
Giordano, L., Gliozzi, V., Olivetti, N. and Pozzato, G. L. 2013. A NonMonotonic Description Logic for Reasoning About Typicality. Artificial Intelligence 195, 165202.Google Scholar
Giordano, L., Gliozzi, V., Olivetti, N. and Pozzato, G. L. 2014. Rational Closure in SHIQ. In DL2014, CEUR Workshop Proceedings, vol. 1193. 1–13.Google Scholar
Giordano, L., Gliozzi, V., Olivetti, N. and Pozzato, G. L. 2015. Semantic characterization of rational closure: From propositional logic to description logics. Artif. Intell. 226, 133.Google Scholar
Giordano, L. and Theseider Dupré, D. 2016. Reasoning in a Rational Extension of SROEL. In DL2016, CEUR Workshop Proceedings, vol. 1577. Extended version in CILC 2016, CEUR Workshop Proceedings, vol. 1645.Google Scholar
Gottlob, G., Hernich, A., Kupke, C. and Lukasiewicz, T. 2014. Stable model semantics for guarded existential rules and description logics. In Proc. KR 2014.Google Scholar
Ke, P. and Sattler, U. 2008. Next Steps for Description Logics of Minimal Knowledge and Negation as Failure. In Proc. DL 2008, CEUR Workshop Proceedings, vol. 353.Google Scholar
Knorr, M., Hitzler, P. and Maier, F. 2012. Reconciling OWL and non-monotonic rules for the semantic web. In ECAI 2012, 474–479.Google Scholar
Kraus, S., Lehmann, D. and Magidor, M. 1990. Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 1–2, 167207.Google Scholar
Krötzsch, M. 2010a. Efficient inferencing for OWL EL. In Proc. JELIA 2010, 234–246.Google Scholar
Krötzsch, M. 2010b. Efficient inferencing for the description logic underlying OWL EL. Tech. Rep. 3005, Institute AIFB, Karlsruhe Institute of Technology.Google Scholar
Lehmann, D. and Magidor, M. 1992. What does a conditional knowledge base entail? Artificial Intelligence 55, 1, 160.CrossRefGoogle Scholar
Lehmann, D. J. 1995. Another perspective on default reasoning. Ann. Math. Artif. Intell. 15, 1, 6182.Google Scholar
Motik, B. and Rosati, R. 2010. Reconciling Description Logics and rules. J. ACM 57, 5.Google Scholar
Straccia, U. 1993. Default inheritance reasoning in hybrid KL-ONE-style logics. In Proc. IJCAI 1993, 676–681.Google Scholar
Supplementary material: PDF

GIORDANO and DUPRÉ supplementary material

Appendix

Download GIORDANO and DUPRÉ supplementary material(PDF)
PDF 124.5 KB