Skip to main content Accessibility help
×
Home

Complexity and compilation of GZ-aggregates in answer set programming

  • MARIO ALVIANO (a1) and NICOLA LEONE (a1)

Abstract

Gelfond and Zhang recently proposed a new stable model semantics based on Vicious Circle Principle in order to improve the interpretation of logic programs with aggregates. The paper focuses on this proposal, and analyzes the complexity of both coherence testing and cautious reasoning under the new semantics. Some surprising results highlight similarities and differences versus mainstream stable model semantics for aggregates. Moreover, the paper reports on the design of compilation techniques for implementing the new semantics on top of existing ASP solvers, which eventually lead to realize a prototype system that allows for experimenting with Gelfond-Zhang's aggregates.

Copyright

References

Hide All
Alviano, M., Dodaro, C., Faber, W., Leone, N. and Ricca, F. 2013. WASP: A native ASP solver based on constraint learning. In Logic Programming and Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, Cabalar, P. and Son, T. C., Eds. Lecture Notes in Computer Science, vol. 8148. Springer, 5466.
Alviano, M., Dodaro, C. and Ricca, F. 2014. Anytime computation of cautious consequences in answer set programming. Theory and Practice of Logic Programming 14, 4–5, 755770.
Alviano, M. and Faber, W. 2013. The complexity boundary of answer set programming with generalized atoms under the FLP semantics. In Logic Programming and Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, Cabalar, P. and Son, T. C., Eds. Lecture Notes in Computer Science, vol. 8148. Springer, 6772.
Alviano, M. and Faber, W. 2015. Stable model semantics of abstract dialectical frameworks revisited: A logic programming perspective. In Proceedings of the 21st International Joint Conference on Artificial Intelligence. IJCAI Organization, Buenos Aires, Argentina, To appear.
Bartholomew, M., Lee, J. and Meng, Y. 2011. First-order semantics of aggregates in answer set programming via modified circumscription. In Logical Formalizations of Commonsense Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06, Stanford, California, USA, March 21-23, 2011. AAAI.
Bomanson, J., Gebser, M. and Janhunen, T. 2014. Improving the normalization of weight rules in answer set programs. In Logics in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, Fermé, E. and Leite, J., Eds. Lecture Notes in Computer Science, vol. 8761. Springer, 166180.
Bomanson, J. and Janhunen, T. 2013. Normalizing cardinality rules using merging and sorting constructions. In Logic Programming and Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, Cabalar, P. and Son, T. C., Eds. Lecture Notes in Computer Science, vol. 8148. Springer, 187199.
Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance. Commun. ACM 54, 12, 92103.
Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive power of logic programming. ACM Comput. Surv. 33, 3, 374425.
Eiter, T., Fink, M., Krennwallner, T., Redl, C. and Schüller, P. 2014. Efficient hex-program evaluation based on unfounded sets. J. Artif. Intell. Res. (JAIR) 49, 269321.
Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming: Propositional case. Ann. Math. Artif. Intell. 15, 3–4, 289323.
Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R. and Tompits, H. 2008. Combining answer set programming with description logics for the semantic web. Artif. Intell. 172, 12–13, 14951539.
Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates in answer set programming. Artif. Intell. 175, 1, 278298.
Faber, W., Pfeifer, G., Leone, N., Dell'Armi, T. and Ielpa, G. 2008. Design and implementation of aggregate functions in the DLV system. Theory and Practice of Logic Programming 8, 5–6, 545580.
Ferraris, P. 2005. Answer sets for propositional theories. In Logic Programming and Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005, Diamante, Italy, September 5-8, 2005, Proceedings, Baral, C., Greco, G., Leone, N., and Terracina, G., Eds. Lecture Notes in Computer Science, vol. 3662. Springer, 119131.
Ferraris, P. 2011. Logic programs with propositional connectives and aggregates. ACM Trans. Comput. Log. 12, 4, 25.
Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From theory to practice. Artif. Intell. 187, 5289.
Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, August 15-19, 1988 (2 Volumes), Kowalski, R. A. and Bowen, K. A., Eds. MIT Press, 10701080.
Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive databases. New Generation Comput. 9, 3/4, 365386.
Gelfond, M. and Zhang, Y. 2014. Vicious circle principle and logic programs with aggregates. Theory and Practice of Logic Programming 14, 4–5, 587601.
Janhunen, T. 2006. Some (in)translatability results for normal logic programs and propositional theories. Journal of Applied Non-Classical Logics 16, 1–2, 3586.
Lee, J. and Palla, R. 2009. System f2lp - computing answer sets of first-order formulas. In Logic Programming and Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Proceedings, Erdem, E., Lin, F., and Schaub, T., Eds. Lecture Notes in Computer Science, vol. 5753. Springer, 515521.
Liu, L., Pontelli, E., Son, T. C. and Truszczynski, M. 2010. Logic programs with abstract constraint atoms: The role of computations. Artif. Intell. 174, 3–4, 295315.
Liu, L. and Truszczynski, M. 2006. Properties and applications of programs with monotone and convex constraints. J. Artif. Intell. Res. (JAIR) 27, 299334.
Pelov, N. 2004. Semantics of Logic Programs with Aggregates. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium.
Pelov, N., Denecker, M. and Bruynooghe, M. 2007. Well-founded and stable semantics of logic programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301353.
Shen, Y., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T. and Deng, J. 2014. FLP answer set semantics without circular justifications for general logic programs. Artif. Intell. 213, 141.
Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model semantics. Artif. Intell. 138, 1–2, 181234.
Son, T. C. and Pontelli, E. 2007. A constructive semantic characterization of aggregates in answer set programming. Theory and Practice of Logic Programming 7, 3, 355375.

Keywords

Type Description Title
PDF
Supplementary materials

Alviano and Leone supplementary material
Online Appendix

 PDF (198 KB)
198 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed