Aguado, F., Ascariz, P., Cabalar, P., Pérez, G. and Vidal, C.
2015. Formal verification for ASP: a case study using the PVS theorem prover. In Proc. of the 15th Intl. Conf. on Computational and Mathematical Methods in Science and Engineering CMMSE 2015 (July 3-7). Rota, Spain.

Aguado, F., Cabalar, P., Diéguez, M., Pérez, G. and Vidal, C.
2013. Temporal equilibrium logic: a survey. Journal of Applied Non-Classical Logics
23, 1–2, 2–24.

Brewka, G., Eiter, T. and Truszczynski, M.
2011. Answer set programming at a glance. Communications of the ACM
54, 12, 92–103.

Cabalar, P. and Ferraris, P.
2007. Propositional theories are strongly equivalent to logic programs. Theory and Practice of Logic Programming
7, 6, 745–759.

Cabalar, P., Odintsov, S., Pearce, D. and Valverde, A.
2007. Partial equilibrium logic. Annals of Mathematics and Artificial Intelligence
50, 3–4, 305–331.

Cabalar, P., Pearce, D. and Valverde, A.
2005. Reducing propositional theories in equilibrium logic to logic programs. In Progress in Artificial Intelligence, Proc. of the 12th Portuguese Conf. on Artificial Intelligence, EPIA'05, Covilhã, Portugal, December 5-8, 2005, Bento, C., Cardoso, A., and Dias, G., Eds. Lecture Notes in Computer Science, vol. 3808. Springer, 4–17.

Cabalar, P., Pearce, D. and Valverde, A.
2007. Minimal logic programs. In Proc. of the 23rd Intl. Conf. on Logic Programming, ICLP 2007 (September 8-13). Porto, Portugal, 104–118.

Delgrande, J. P., Schaub, T., Tompits, H. and Woltran, S.
2008. Belief revision of logic programs under answer set semantics. In Proc. of the 11th Intl. Conf. on Principles of Knowledge Representation and Reasoning KR 2008 (September 16-19). Sydney, Australia, 411–421.

Eiter, T., Fink, M., Pührer, J., Tompits, H., and Woltran, S.
2013. Model-based recasting in answer-set programming. Journal of Applied Non-Classical Logics
23, 1–2, 75–104.

Ferraris, P.
2005. Answer sets for propositional theories. In *Logic Programming and Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005, Diamante, Italy, September 5-8, 2005, Proceedings*. 119–131.

Ferraris, P., Lee, J. and Lifschitz, V.
2007. A new perspective on stable models. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI'07) (January 6-12, 2007), Veloso, M. M., Ed. Hyderabad, India, 372–379.

Fink, M.
2011. A general framework for equivalences in answer-set programming by countermodels in the logic of here-and-there. TPLP
11, 2–3, 171–202.

Gelfond, M. and Lifschitz, V.
1988. The stable model semantics for logic programming. In Logic Programming: Proc. of the Fifth International Conference and Symposium (Volume 2), Kowalski, R. A. and Bowen, K. A., Eds. MIT Press, Cambridge, MA, 1070–1080.

Gödel, K.
1932. Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften Wien, mathematisch, naturwissenschaftliche Klasse
69, 65–66.

Harrison, A., Lifschitz, V., Valverde, A. and Pearce, D.
2014. Infinitary equilibrium logic. In *Working Notes of Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP)*.

Heyting, A.
1930. Die formalen Regeln der intuitionistischen Logik. *Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse*, 42–56.

Kozen, D.
1983. Results on the propositional μ-calculus. Theoretical Computer Science
27, 3, 333–354.

Lifschitz, V., Pearce, D. and Valverde, A.
2001. Strongly equivalent logic programs. ACM Trans. Comput. Log.
2, 4, 526–541.

Marek, V. and Truszczyński, M.
1999. Stable models and an alternative logic programming paradigm. Springer-Verlag, 169–181.

Nicholson, T. and Foo, N.
1989. A denotational semantics for prolog. ACM Transactions on Programming Languages and Systems
11, 4 (Oct.), 650–665.

Niemelä, I.
1999. Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence
25, 241–273.

Odintsov, S. P. and Pearce, D.
2005. Routley semantics for answer sets. In 8th Intl. Cond. on Logic Programming and Nonmonotonic Reasoning, LPNMR 2005 (September 5-8). Diamante, Italy, 343–355.

Owre, S., Rushby, J. M. and Shankar, N.
1992. Pvs: A prototype verfication system. In 11th International Conference on Automted Deduction (CADE). Lecture Notes in Artificial Intelligence
607, 748–752.

Pearce, D.
1996. A new logical characterisation of stable models and answer sets. In Non monotonic extensions of logic programming. Proc. NMELP'96. (LNAI 1216). Springer-Verlag.

Pearce, D.
2006. Equilibrium logic. Annals of Mathematics and Artificial Intelligence
47, 1–2, 3–41.

Pearce, D. and Valverde, A.
2004a. Towards a first order equilibrium logic for nonmonotonic reasoning. In *Proc. of the 9th European Conf. on Logics in AI (JELIA'04)*. 147–160.

Pearce, D. and Valverde, A.
2004b. Uniform equivalence for equilibrium logic and logic programs. In Proc. of the 7th Intl. Conf. on Logic Programming and Nonmonotonic Reasoning, LPNMR 2004 (January 6-8). Fort Lauderdale, FL, USA, 194–206.

Scott, D. and Strachey, C.
1971. Toward a mathematical semantics for computer languages. Tech. Rep. PRG-6, Oxford Programming Research Group Technical Monograph.

Slota, M. and Leite, J.
2014. The rise and fall of semantic rule updates based on se-models. Theory and Practice of Logic Programming
14, 6, 869–907.

Woltran, S.
2008. A common view on strong, uniform, and other notions of equivalence in answer-set programming. Theory and Practice of Logic Programming
8, 2, 217–234.