Skip to main content
×
Home
    • Aa
    • Aa

Embedding defeasible logic into logic programming

  • GRIGORIS ANTONIOU (a1), DAVID BILLINGTON (a2), GUIDO GOVERNATORI (a3) and MICHAEL J. MAHER (a4)
Abstract

Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory $D$ into a meta-program $P(D)$. We show that under a condition of decisiveness, the defeasible consequences of $D$ correspond exactly to the sceptical conclusions of $P(D)$ under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of $D$ are included in all stable models of $P(D)$). If we wish a complete embedding for the general case, we need to use the Kunen semantics of $P(D)$, instead.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Theory and Practice of Logic Programming
  • ISSN: 1471-0684
  • EISSN: 1475-3081
  • URL: /core/journals/theory-and-practice-of-logic-programming
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 111 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2017. This data will be updated every 24 hours.