Skip to main content
×
×
Home

Inference and learning in probabilistic logic programs using weighted Boolean formulas

  • DAAN FIERENS (a1), GUY VAN DEN BROECK (a1), JORIS RENKENS (a1), DIMITAR SHTERIONOV (a1), BERND GUTMANN (a1), INGO THON (a1), GERDA JANSSENS (a1) and LUC DE RAEDT (a1)...
Abstract

Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. This paper investigates how classical inference and learning tasks known from the graphical model community can be tackled for probabilistic logic programs. Several such tasks, such as computing the marginals, given evidence and learning from (partial) interpretations, have not really been addressed for probabilistic logic programs before. The first contribution of this paper is a suite of efficient algorithms for various inference tasks. It is based on the conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce inference tasks to well-studied tasks, such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature. The second contribution is an algorithm for parameter estimation in the learning from interpretations setting. The algorithm employs expectation-maximization, and is built on top of the developed inference algorithms. The proposed approach is experimentally evaluated. The results show that the inference algorithms improve upon the state of the art in probabilistic logic programming, and that it is indeed possible to learn the parameters of a probabilistic logic program from interpretations.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Inference and learning in probabilistic logic programs using weighted Boolean formulas
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Inference and learning in probabilistic logic programs using weighted Boolean formulas
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Inference and learning in probabilistic logic programs using weighted Boolean formulas
      Available formats
      ×
Copyright
References
Hide All
Bryant, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35, 8 (August), 677691.
Chavira, M., Darwiche, A. and Jaeger, M. 2006. Compiling relational Bayesian networks for exact inference. International Journal of Approximate Reasoning 42, 1, 420.
Darwiche, A. 2001. On the tractability of counting theory models and its application to belief revision and truth maintenance. Journal of Applied Non-Classical Logics 11, 1–2, 1134.
Darwiche, A. 2004. New advances in compiling CNF into decomposable negation normal form. In Proceedings of 16th European Conference on Artificial Intelligence. 328–332.
Darwiche, A. 2009. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge, UK, Chap. 12.
Darwiche, A. and Marquis, P. 2002. A knowledge compilation map. Journal of Artificial Intelligence Research 17, 1 (September), 229264.
Denecker, M., Bruynooghe, M. and Marek, V. W. 2001. Logic programming revisited: Logic programs as inductive definitions. ACM Transactions on Computational Logic 2, 4, 623654.
De Raedt, L. 2008. Logical and Relational Learning. Cognitive Technologies. Springer, New York, NY.
De Raedt, L., Frasconi, P., Kersting, K. and Muggleton, S., Eds. 2008. Probabilistic Inductive Logic Programming – Theory and Applications. LNCS, vol. 4911. Springer, New York, NY.
De Raedt, L., Kimmig, A. and Toivonen, H. 2007. Problog: A probabilistic prolog and its application in link discovery. In Proceedings of 20th International Joint Conference on Artificial Intelligence. AAAI Press, Menlo Park, CA, 24682473.
Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M. and Singla, P. 2008. Probabilistic Inductive Logic Programming – Theory and Applications, Chapter “Markov Logic,” Lecture Notes in Computer Science. Springer, New York, NY.
Fierens, D., Van den Broeck, G., Bruynooghe, M. and De Raedt, L. 2012. Constraints for probabilistic logic programming. In Proceedings of the NIPS 2012 Workshop on Probabilistic Programming: Foundations and Applications.
Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B. and De Raedt, L. 2011. Inference in probabilistic logic programs using weighted CNFs. In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI), AUAI Press, Corvallis, Oregon, USA, 211220.
Getoor, L. and Taskar, B. 2007. Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). MIT Press, Cambridge, MA.
Gomes, C. P., Hoffmann, J., Sabharwal, A. and Selman, B. 2007. From sampling to model counting. In Proceedings of the 20th International Joint Conference on Artificial Intelligence. 2293–2299.
Grädel, E. 1992. On transitive closure logic. In Proceedings of the 5th Workshop on Computer Science Logic. Lecture Notes in Computer Science, vol. 626. Springer, New York, NY, 149163.
Gutmann, B., Kimmig, A., Kersting, K. and Raedt, L. 2008a. Parameter learning in probabilistic databases: A least squares approach. In Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD '08) – Part I. Springer-Verlag, Berlin, Germany, 473488.
Gutmann, B., Kimmig, A., Kersting, K. and Raedt, L. D. 2008b. Parameter learning in probabilistic databases: A least squares approach. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, Daelemans, W., Goethals, B. and Morik, K., Eds. Lecture Notes in Computer Science, vol. 5211. Springer, Berlin, Germany, 473488.
Gutmann, B., Thon, I. and De Raedt, L. 2010. Learning the Parameters of Probabilistic Logic Programs from Interpretations. Technical Report CW 584, KU Leuven.
Gutmann, B., Thon, I. and De Raedt, L. 2011. Learning the parameters of probabilistic logic programs from interpretations. In Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), Part 1. Springer-Verlag, Berlin, Germany, 581596.
Ishihata, M., Kameya, Y., Sato, T. and Minato, S. 2008. Propositionalizing the EM algorithm by BDDs. In Late Breaking Papers of the 18th International Conference on Inductive Logic Programming.
Janhunen, T. 2004. Representing normal programs with clauses. In Proceedings of the 16th European Conference on Artificial Intelligence. IOS Press, Amsterdam, Netherlands, 358362.
Kersting, K., De Raedt, L. and Kramer, S. 2000. Interpreting Bayesian logic programs. In Proceedings of the AAAI-2000 workshop on learning statistical models from relational data, AAAI Press, 2935.
Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S. and Rocha, R. 2010. On the implementation of the probabilistic logic programming language problog. In Theory and Practice of Logic Programming Systems, 24th International Conference on Logic Programming (ICLP 2008), Special Issue, vol. 11, pp. 235–262, arXiv: CoRR abs/1006.4442.
Lin, F. and Zhao, Y. 2002. Assat: Computing answer sets of a logic program by sat solvers. In Artificial Intelligence. Benferhat, S. and Giunchiglia, E., Eds. Elsevier, 112117.
Lloyd, J. 1987. Foundations of Logic Programming, 2nd edn. Springer-Verlag, Berlin, Germany.
Mantadelis, T. and Janssens, G. 2010. Dedicated tabling for a probabilistic setting. In Technical Communications of 26th International Conference on Logic Programming, Hermenegildo, M. and Schaub, T., Eds. Dagstuhl Publishing, Saarbrücken/Wadern, Germany, 124133.
Meert, W., Struyf, J. and Blockeel, H. 2009. CP-logic theory inference with contextual variable elimination and comparison to BDD based inference methods. In Proceedings of the 19th International Conference on Inductive Logic Programming, De Raedt, L., Ed. Elsevier, 96109.
Muise, C., Mcilraith, S. A., Beck, J. C. and Hsu, E. 2012. DSHARP: Fast d-DNNF compilation with sharpSAT. In Canadian Conference on Artificial Intelligence, Kosseim, L. and Inkpen, D. Eds. Springer.
Park, J. D. 2002. Using weighted MAX-SAT engines to solve MPE. In Proceedings of the 18th National Conference on Artificial Intelligence, AAAI Press, 682687.
Poole, D. 2008. Probabilistic Inductive Logic Programming – Theory and Applications, Chapter: “The Independent Choice Logic and Beyond.” Lecture Notes in Computer Science. Springer, Berlin, Germany.
Poon, H. and Domingos, P. 2006. Sound and efficient inference with probabilistic and deterministic dependencies. In Proceedings of the 21st National Conference on Artificial Intelligence, AAAI Press.
Riguzzi, F. and Swift, T. 2013. Well–definedness and efficient inference for probabilistic logic programming under the distribution semantics. Theory and Practice of Logic Programming, 13, 2, 279302.
Robertson, N. and Seymour, P. 1986. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 3, 309322.
Sang, T., Beame, P. and Kautz, H. 2005. Solving Bayesian networks by weighted model counting. In Proceedings of the 20th National Conference on Artificial Intelligence, AAAI Press, 475482.
Sato, T. 1995. A statistical learning method for logic programs with distribution semantics. In Proceedings of the 12th International Conference on Logic Programming (ICLP95). MIT Press, Cambridge, MA, 715729.
Sato, T. and Kameya, Y. 2008. Probabilistic Inductive Logic Programming – Theory and Applications, Chapter: “New Advances in Logic-Based Probabilistic Modeling by PRISM.” Lecture Notes in Computer Science. Springer, Berlin, Germany.
Van den Broeck, G., Thon, I., van Otterlo, M. and De Raedt, L. 2010. DTProbLog: A decision-theoretic probabilistic Prolog. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI Press, 12171222.
Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general logic programs. Journal of ACM 38, 3, 620650.
Vennekens, J., Denecker, M. and Bruynooghe, M. 2009. Cp-logic: A language of causal probabilistic events and its relation to logic programming. Theory and Practice of Logic Programming 9, 3, 245308. CoRR abs/0904.1672.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Theory and Practice of Logic Programming
  • ISSN: 1471-0684
  • EISSN: 1475-3081
  • URL: /core/journals/theory-and-practice-of-logic-programming
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Fierens Supplementary Material
Appendix

 PDF (470 KB)
470 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 357 *
Loading metrics...

Abstract views

Total abstract views: 619 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2018. This data will be updated every 24 hours.