Skip to main content Accessibility help
×
Home

Minimal intervention strategies in logical signaling networks with ASP

  • ROLAND KAMINSKI (a1), TORSTEN SCHAUB (a1), ANNE SIEGEL (a2) and SANTIAGO VIDELA (a3)

Abstract

Proposing relevant perturbations to biological signaling networks is central to many problems in biology and medicine because it allows for enabling or disabling certain biological outcomes. In contrast to quantitative methods that permit fine-grained (kinetic) analysis, qualitative approaches allow for addressing large-scale networks. This is accomplished by more abstract representations such as logical networks. We elaborate upon such a qualitative approach aiming at the computation of minimal interventions in logical signaling networks relying on Kleene's three-valued logic and fixpoint semantics. We address this problem within answer set programming and show that it greatly outperforms previous work using dedicated algorithms.

Copyright

References

Hide All
Abdi, A., Tahoori, M. B. and Emamian, E. S. 2008. Fault diagnosis engineering of digital circuits can identify vulnerable molecules in complex cellular pathways. Science Signaling 1, 42, ra10.
Acuña, V. V., Milreu, P. V. P., Cottret, L. L., Marchetti-Spaccamela, A. A., Stougie, L. L. and Sagot, M.-F. M. 2012. Algorithms and complexity of enumerating minimal precursor sets in genome-wide metabolic networks. Bioinformatics 28, 19 (September), 24742483.
Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge, UK.
Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A. and Berens, M. 2004. A knowledge based approach for representing and reasoning about signaling networks. In Proceedings of the Twelfth International Conference on Intelligent Systems for Molecular Biology/Third European Conference on Computational Biology (ISMB'04/ECCB'04), 15–22.
Batt, G., de Jong, H., Page, M. and Geiselmann, J. 2008. Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44, 4 (March), 982989.
Bouaynaya, N. N., Shterenberg, R. and Schonfeld, D. 2011. Methods for optimal intervention in gene regulatory networks. Signal Processing Magazine, IEEE 29, 1 (December), 158163.
Calzone, L. L., Tournier, L. L., Fourquet, S. S., Thieffry, D. D., Zhivotovsky, B. B., Barillot, E. E. and Zinovyev, A. A. 2010. Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Computational Biology 6, 3 (February), e10007021000702.
Castell, T., Cayrol, C., Cayrol, M. and Le Berre, D. 1996. Using the Davis and Putnam procedure for an efficient computation of preferred models. In Proceedings of the Twelfth European Conference on Artificial Intelligence (ECAI'96), Wahlster, W., Ed. John Wiley & sons, 350354.
Di Rosa, E., Giunchiglia, E. and Maratea, M. 2010. Solving satisfiability problems with preferences. Constraints 15, 4, 485515.
Erdem, E. and Türe, F. 2008. Efficient haplotype inference with answer set programming. In Proceedings of the Twenty-third National Conference on Artificial Intelligence (AAAI'08), Fox, D. and Gomes, C., Eds. AAAI Press, 436441.
Faryabi, B., Vahedi, G., Chamberland, J.-F., Datta, A. and Dougherty, E. R. 2008. Optimal constrained stationary intervention in gene regulatory networks. EURASIP Journal of Bioinformatics and Systems Biology 2008.
Fitting, M. 1985. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming 2, 4, 295312.
Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S. and Veber, P. 2010. Repair and prediction (under inconsistency) in large biological networks with answer set programming. In Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning (KR'10), Lin, F. and Sattler, U., Eds. AAAI Press, 497507.
Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Thiele, S. A user's guide to gringo, clasp, clingo, and iclingo.
Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers.
Gebser, M., Kaminski, R. and Schaub, T. 2011. Complex optimization in answer set programming. Theory and Practice of Logic Programming 11, 4–5, 821839.
Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. clasp: A conflict-driven answer set solver. In Proceedings of the Ninth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'07), Baral, C., Brewka, G., and Schlipf, J., Eds. Lecture Notes in Artificial Intelligence, vol. 4483, Springer-Verlag, 260265.
Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T. and Wanko, P. 2013. Domain-specific heuristics in answer set programming. In Proceedings of the Twenty-Seventh National Conference on Artificial Intelligence (AAAI'13), desJardins, M. and Littman, M., Eds. AAAI Press. To appear.
Gebser, M., Kaufmann, B. and Schaub, T. 2013. Advanced conflict-driven disjunctive answer set solving. In Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence (IJCAI'13), Rossi, F., Ed. IJCAI/AAAI. To appear.
Gebser, M., Schaub, T., Thiele, S. and Veber, P. 2011. Detecting inconsistencies in large biological networks with answer set programming. Theory and Practice of Logic Programming 11, 2–3, 323360.
Inoue, K. 2011. Logic programming for boolean networks. In Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence (IJCAI'11), Walsh, T., Ed. IJCAI/AAAI, 924930.
Inoue, K. and Sakama, C. 2012. Oscillating behavior of logic programs. In Correct Reasoning, Erdem, E., Lee, J., Lierler, Y. and Pearce, D., Eds. Lecture Notes in Computer Science, vol. 7265. Springer, 345362.
Karlebach, G. G. and Shamir, R. R. 2009. Minimally perturbing a gene regulatory network to avoid a disease phenotype: the glioma network as a test case. BMC Systems Biology 4, 1515.
Kauffman, S. 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 3 (February), 437467.
Kauffman, K. J., Prakash, P. and Edwards, J. S. 2003. Advances in flux balance analysis. Current opinion in biotechnology 14, 5 (October), 491496.
Kitano, H. 2002. Systems biology: a brief overview. Science 295, 5560, 16621664.
Klamt, S. S. 2006. Generalized concept of minimal cut sets in biochemical networks. Biosystems 83, 2–3 (January), 233247.
Klamt, S., Haus, U.-U. and Theis, F. J. 2009. Hypergraphs and cellular networks. PLoS Computational Biology 5, 5 (May), e1000385.
Kleene, S. 1950. Introduction to Metamathematics. Princeton, NJ, 1950.
Kreutz, C. and Timmer, J. 2009. Systems biology: experimental design. FEBS Journal 276, 4 (January), 923942.
Mitsos, A., Melas, I., Siminelakis, P., Chairakaki, A., Saez-Rodriguez, J. and Alexopoulos, L. G. 2009. Identifying Drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Computational Biology 5, 12, e1000591.
Morris, M., Saez-Rodriguez, J., Sorger, P. and Lauffenburger, D. A. 2010. Logic-based models for the analysis of cell signaling networks. Biochemistry 49, 15, 32163224.
Naldi, A., Carneiro, J., Chaouiya, C. and Thieffry, D. 2009. Diversity and plasticity of th cell types predicted from regulatory network modelling. PLoS Computational Biology 6, 9 (December), e1000912.
Ray, O., Whelan, K. and King, R. 2010. Logic-based steady-state analysis and revision of metabolic networks with inhibition. In Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS '10) 0, 661666.
Saez-Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R., Lauffenburger, D. A., Klamt, S. and Sorger, P. 2009. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Molecular Systems Biology 5, 331.
Saez-Rodriguez, J., Alexopoulos, L. G., Zhang, M., Morris, M., Lauffenburger, D. A. and Sorger, P. 2011. Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Research 71, 16, 5400.
Saez-Rodriguez, J., Simeoni, L., Lindquist, J., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.-U., Weismantel, R., Gilles, E., Klamt, S. and Schraven, B. 2007. A logical model provides insights into T cell receptor signaling. PLOS Computational Biology 3, 8 (August), e163.
Samaga, R., Saez-Rodriguez, J., Alexopoulos, L. G., Sorger, P. and Klamt, S. 2009. The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Computational Biology 5, 8 (August), e1000438.
Samaga, R., Von Kamp, A. and Klamt, S. 2010. Computing combinatorial intervention strategies and failure modes in signaling networks. Journal of Computational Biology 17, 1 (Jan.), 3953.
Sharan, R. and Karp, R. M. 2012. Reconstructing boolean models of signaling. In Research in Computational Molecular Biology. Springer Berlin Heidelberg, Berlin, Heidelberg, 261271.
Sparkes, A., Aubrey, W., Byrne, E., Clare, A., Khan, M. N., Liakata, M., Markham, M., Rowland, J., Soldatova, L. N., Whelan, K. E., Young, M. and King, R. D. 2010. Towards robot scientists for autonomous scientific discovery. Automated Experimentation 2, 11.
Stelling, J. J., Klamt, S. S., Bettenbrock, K. K., Schuster, S. S. and Gilles, E. D. E. 2002. Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 6912 (November), 190193.
Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. and Doyle, J. 2004. Robustness of Cellular Functions. Cell 118, 6, 675685.
Thomas, R. R. 1973. Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42, 3 (November), 563585.
Videla, S., Guziolowski, C., Eduati, F., Thiele, S., Grabe, N., Saez-Rodriguez, J. and Siegel, A. 2012. Revisiting the training of logic models of protein signaling networks with ASP. In Computational Methods in Systems Biology 2012, Gilbert, D. and Heiner, M., Eds. Springer Berlin/Heidelberg, 342361.
Wang, R.-S. and Albert, R. 2011. Elementary signaling modes predict the essentiality of signal transduction network components. BMC Systems Biology 5, 44.
Wang, B. and Buck, M. 2012. Customizing cell signaling using engineered genetic logic circuits. Trends in Microbiology 20, 8 (August), 376384.
Wang, R.-S. R., Saadatpour, A. A. and Albert, R. R. 2012. Boolean modeling in systems biology: an overview of methodology and applications. Physical biology 9, 5 (September), 055001055001.

Minimal intervention strategies in logical signaling networks with ASP

  • ROLAND KAMINSKI (a1), TORSTEN SCHAUB (a1), ANNE SIEGEL (a2) and SANTIAGO VIDELA (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed