Skip to main content Accessibility help
×
Home

On definite program answers and least Herbrand models

  • WŁODZIMIERZ DRABENT (a1) (a2)

Abstract

A sufficient and necessary condition is given under which least Herbrand models exactly characterize the answers of definite clause programs.

Copyright

References

Hide All
Apt, K. R. 1997. From Logic Programming to Prolog. International Series in Computer Science, Prentice-Hall, Hemel Hempstead, Hertfordshire.
Bossi, A. 2009. S-semantics for logic programming: A retrospective look. Theoretical Computer Science 410, 46, 46924703.
Davis, M. 1993. First order logic. In Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 1, Logic Foundations, Gabbay, D. M., Hogger, C. J. and Robinson, J. A., Eds. Oxford University Press, New York, 3165.
Doets, K. 1994. From Logic to Logic Programming. The MIT Press, Cambridge, MA.
Drabent, W. 2016. Correctness and Completeness of Logic Programs. ACM Trans. Comput. Log. 17, 3 doi: http://dx.doi.org/10.1145/2898434.
Drabent, W. and Maluszynski, J. 1987. Inductive assertion method for logic programs. In TAPSOFT'87 (International Joint Conference on Theory and Practice of Software Development, Pisa, Italy), Vol. 2, Ehrig, H., Kowalski, R. A., Levi, G. and Montanari, U., Eds. Lecture Notes in Computer Science, Vol. 250. Springer-Verlag, Berlin, Heidelberg, 167181.
Drabent, W. and Małuszyński, J. 1988. Inductive assertion method for logic programs. Theoretical Computer Science 59, 133155.
Lloyd, J. W. 1987. Foundations of Logic Programming. Springer-Verlag, Berlin, Heidelberg. Second, extended edition.
Maher, M. J. 1988. Equivalences of logic programs. In Foundations of Deductive Databases and Logic Programming, Minker, J., Ed. Morgan Kaufmann Publishers, Inc. Los Altos California, 627658.
Naish, L. 2014. Transforming floundering into success. TPLP 14, 2, 215238.
Shoenfield, J. R. 1967. Mathematical Logic. Addison-Wesley, Reading, MA.
Sterling, L. and Shapiro, E. 1994. The Art of Prolog, 2 ed. The MIT Press, Cambridge, MA.
van Dalen, D. 2004. Logic and Structure, 4th ed. Springer-Verlag, Berlin, Heidelberg.

Keywords

Related content

Powered by UNSILO

On definite program answers and least Herbrand models

  • WŁODZIMIERZ DRABENT (a1) (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.