Published online by Cambridge University Press: 31 July 2003
Schlipf (1995) proved that Stable Logic Programming (SLP) solves all $\mathit{NP}$ decision problems. We extend Schlipf's result to prove that SLP solves all search problems in the class $\mathit{NP}$. Moreover, we do this in a uniform way as defined in Marek and Truszczyński (1991). Specifically, we show that there is a single $\mathrm{DATALOG}^{\neg}$ program $P_{\mathit{Trg}}$ such that given any Turing machine $M$, any polynomial $p$ with non-negative integer coefficients and any input $\sigma$ of size $n$ over a fixed alphabet $\Sigma$, there is an extensional database $\mathit{edb}_{M,p,\sigma}$ such that there is a one-to-one correspondence between the stable models of $\mathit{edb}_{M,p,\sigma} \cup P_{\mathit{Trg}}$ and the accepting computations of the machine $M$ that reach the final state in at most $p(n)$ steps. Moreover, $\mathit{edb}_{M,p,\sigma}$ can be computed in polynomial time from $p$, $\sigma$ and the description of $M$ and the decoding of such accepting computations from its corresponding stable model of $\mathit{edb}_{M,p,\sigma} \cup P_{\mathit{Trg}}$ can be computed in linear time. A similar statement holds for Default Logic with respect to $\Sigma_2^\mathrm{P}$-search problems.The proof of this result involves additional technical complications and will be a subject of another publication.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.