Published online by Cambridge University Press: 21 July 2014
Concurrent Constraint Programming (CCP) is a simple and powerful model for concurrency where agents interact by telling and asking constraints. Since their inception, CCP-languages have been designed for having a strong connection to logic. In fact, the underlying constraint system can be built from a suitable fragment of intuitionistic (linear) logic -ILL- and processes can be interpreted as formulas in ILL. Constraints as ILL formulas fail to represent accurately situations where “preferences” (called soft constraints) such as probabilities, uncertainty or fuzziness are present. In order to circumvent this problem, c-semirings have been proposed as algebraic structures for defining constraint systems where agents are allowed to tell and ask soft constraints. Nevertheless, in this case, the tight connection to logic and proof theory is lost. In this work, we give a proof theoretical meaning to soft constraints: they can be defined as formulas in a suitable fragment of ILL with subexponentials (SELL) where subexponentials, ordered in a c-semiring structure, are interpreted as preferences. We hence achieve two goals: (1) obtain a CCP language where agents can tell and ask soft constraints and (2) prove that the language in (1) has a strong connection with logic. Hence we keep a declarative reading of processes as formulas while providing a logical framework for soft-CCP based systems. An interesting side effect of (1) is that one is also able to handle probabilities (and other modalities) in SELL, by restricting the use of the promotion rule for non-idempotent c-semirings.This finer way of controlling subexponentials allows for considering more interesting spaces and restrictions, and it opens the possibility of specifying more challenging computational systems.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.