Skip to main content Accessibility help
×
Home

Simulating Dynamic Systems Using Linear Time Calculus Theories

  • BART BOGAERTS (a1), JOACHIM JANSEN (a1), MAURICE BRUYNOOGHE (a1), BROES DE CAT (a1), JOOST VENNEKENS (a1) and MARC DENECKER (a1)...

Abstract

Dynamic systems play a central role in fields such as planning, verification, and databases. Fragmented throughout these fields, we find a multitude of languages to formally specify dynamic systems and a multitude of systems to reason on such specifications. Often, such systems are bound to one specific language and one specific inference task. It is troublesome that performing several inference tasks on the same knowledge requires translations of your specification to other languages. In this paper we study whether it is possible to perform a broad set of well-studied inference tasks on one specification. More concretely, we extend IDP3 with several inferences from fields concerned with dynamic specifications.

Copyright

References

Hide All
Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G., Krennwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J., Redl, C., Ricca, F., Schneider, P., Schwengerer, M., Spendier, L. K., Wallner, J. P., and Xiao, G. 2013. The fourth answer set programming competition: Preliminary report. In LPNMR, Cabalar, P. and Son, T. C., Eds. Lecture Notes in Computer Science, vol. 8148. Springer, 4253.
Amadini, R., Gabbrielli, M., and Mauro, J. 2013. Features for building CSP portfolio solvers. arXiv:1308.0227 [cs.AI].
Amanda, C., Andrew, C., Olaya, A. G., Jimenez, S., Lopez, C. L., Sanner, S., and Yoon, S. 2012. A survey of the seventh international planning competition. AI Magazine 33, 1 (June), 18.
Apt, K. R. 2003. Principles of Constraint Programming. Cambridge University Press.
Bogaerts, B. 2014. PacManID: an implementation of Pac-Man using the simulation inference. http://dtai.cs.kuleuven.be/krr/files/software/various/pacman.tar.gz
Bonner, A. J., Kifer, M., and Consens, M. 1993. Database programming in transaction logic. In In Proc. 4th Int. Workshop on Database Programming Languages. 309–337.
Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., Cozza, S., Faber, W., Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S., Reale, K., Santoro, M. C., Sirianni, M., Terracina, G., and Veltri, P. 2011. The third answer set programming system competition: Preliminary report of the system competition track. In Proceedings of the International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). Springer, 388403.
Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., and Tacchella, A. 2002. NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In Proc. International Conference on Computer-Aided Verification (CAV 2002). LNCS, vol. 2404. Springer, Copenhagen, Denmark.
De Cat, B., Bogaerts, B., Bruynooghe, M., and Denecker, M. 2014. Predicate logic as a modelling language: The IDP system. CoRR abs/1401.6312.
De Cat, B., Denecker, M., and Stuckey, P. 2012. Lazy model expansion by incremental grounding. In Proceedings of the 28th International Conference on Logic Programming – Technical Communications (ICLP'12), Dovier, A. and Costa, V. Santos, Eds. LIPIcs, vol. 17. Schloss Daghstuhl - Leibniz-Zentrum fuer Informatik, 201211.
De Pooter, S., Wittocx, J., and Denecker, M. 2011. A prototype of a knowledge-based programming environment. CoRR abs/1108.5667.
Denecker, M. 2012. The FO(ċ) knowledge base system project: An integration project (invited talk). In ASPOCP.
Denecker, M. and Ternovska, E. 2008. A logic of nonmonotone inductive definitions. ACM Transactions on Computational Logic (TOCL) 9, 2 (Apr.), 14:1–14:52.
Denecker, M. and Vennekens, J. 2008. Building a knowledge base system for an integration of logic programming and classical logic. In ICLP, García de la Banda, M. and Pontelli, E., Eds. LNCS, vol. 5366. Springer, 7176.
Denecker, M. and Vennekens, J. 2014. The well-founded semantics is the principle of inductive definition, revisited. In KR. AAAI Press. Accepted.
Fitting, M. 1996. First-order logic and automated theorem proving (2nd ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., and Schaub, T. 2012. Stream reasoning with answer set programming: Preliminary report. In KR, Brewka, G., Eiter, T., and McIlraith, S. A., Eds. AAAI Press, 613617.
Gelfond, M. and Lifschitz, V. 1998. Action languages. Electron. Trans. Artif. Intell. 2, 193210.
Ghallab, M., Isi, C. K., Penberthy, S., Smith, D. E., Sun, Y., and Weld, D. 1998. PDDL – The Planning Domain Definition Language. Tech. rep., CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control.
Green, T. J., Aref, M., and Karvounarakis, G. 2012. Logicblox, platform and language: A tutorial. In Datalog, Barceló, P. and Pichler, R., Eds. LNCS, vol. 7494. Springer, 18.
Haufe, S., Schiffel, S., and Thielscher, M. 2012. Automated verification of state sequence invariants in general game playing. Artif. Intell. 187, 130.
IDP 2013. The IDP system. http://dtai.cs.kuleuven.be/krr/software
IDPDraw 2012. IDPDraw: finite structure visualization. http://dtai.cs.kuleuven.be/krr/software/visualisation
Ierusalimschy, R., de Figueiredo, L. H., and Celes, W. 1996. Lua – an extensible extension language. Software: Practice and Experience 26, 6, 635652.
Kaufmann, M., Moore, J. S., and Manolios, P. 2000. Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA.
Kowalski, R. A. and Sadri, F. 2013. Towards a logic-based unifying framework for computing. CoRR abs/1301.6905.
Kowalski, R. A. and Sergot, M. J. 1986. A logic-based calculus of events. New Generation Computing 4, 1, 6795.
Leuschel, M. and Butler, M. J. 2008. ProB: An automated analysis toolset for the B method. STTT 10, 2, 185203.
Lin, F. and Reiter, R. 1997. How to progress a database. Artif. Intell. 92, 1-2, 131167.
Mariën, M., Gilis, D., and Denecker, M. 2004. On the relation between ID-Logic and Answer Set Programming. In JELIA, Alferes, J. J. and Leite, J. A., Eds. LNCS, vol. 3229. Springer, 108120.
Markov, A. A. 1906. Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete 2-ya seriya, 15, 135156.
The Coq development team. 2004. The Coq proof assistant reference manual. LogiCal Project. Version 8.0.
McCarthy, J. and Hayes, P. J. 1969. Some philosophical problems from the standpoint of artificial intelligence. In Machine Intelligence 4, Meltzer, B. and Michie, D., Eds. Edinburgh University Press, 463502.
Nemhauser, G. L. and Wolsey, L. A. 1988. Integer and Combinatorial Optimization. John Wiley and Sons, New York.
Reiter, R. 2001. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press.
Riazanov, A. and Voronkov, A. 2002. The design and implementation of vampire. AI Communications 15, 2-3, 91110.
Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., and Taghdiri, M. 2003. Debugging overconstrained declarative models using unsatisfiable cores. In ASE. IEEE Computer Society, 94105.
Sutcliffe, G. 2009. The TPTP problem library and associated infrastructure: The FOF and CNF parts, v3.5.0. Journal of Automated Reasoning 43, 4, 337362.
Sutcliffe, G. 2013. The 6th IJCAR Automated Theorem Proving System Competition - CASC-J6. AI Communications 26, 2, 211223.
Sutcliffe, G., Schulz, S., Claessen, K., and Baumgartner, P. 2012. The TPTP typed first-order form with arithmetic. In LPAR, Bjørner, N. and Voronkov, A., Eds. Lecture Notes in Computer Science, vol. 7180. Springer, 406419.
Thielscher, M. 2011. A unifying action calculus. Artif. Intell. 175, 1 (Jan.), 120141.
van Ginkel, N. 2013. Pddl2IDP: a PDDL parser for IDP. http://dtai.cs.kuleuven.be/krr/files/software/various/pddl2idp.zip
Vardi, M. Y. 1986. Querying logical databases. Journal of Computer and System Sciences 33, 2, 142160.
Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., and Wischnewski, P. 2009. Spass version 3.5. In CADE, Schmidt, R. A., Ed. LNCS, vol. 5663. Springer, 140145.
Wittocx, J., Mariën, M., and Denecker, M. 2008. The idp system: a model expansion system for an extension of classical logic. In LaSh, M. Denecker, Ed. 153–165.

Keywords

Type Description Title
PDF
Supplementary materials

BOGAERTS et al.
Simulating Dynamic Systems Using Linear Time Calculus Theories

 PDF (277 KB)
277 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed