Skip to main content Accessibility help

Stable model semantics for founded bounds



Answer Set Programming (ASP) is a powerful form of declarative programming used in areas such as planning or reasoning. ASP solvers enforce stable model semantics, which rule out solutions representing certain kinds of circular reasoning. Unfortunately, current ASP solvers are incapable of solving problems involving cyclic dependencies between multiple integer or continuous quantities effectively. In this paper, we generalize the notion of stable models to bound founded variables with arbitrary domains, where bounds on such variables need to be justified by some rule in the program in order for the model to be stable. We show how to handle significantly more general rule forms where bound founded variables can act as head or body variables, and where head and body variables can be related via complex constraints subject to certain monotonicity requirements. We describe a new unfounded set detection algorithm which allows us to enforce this generalization of the stable model semantics. We also show how these unfounded sets can be explained in order to allow effective conflict-directed clause learning. The new solver merges the best features of CP, SAT and ASP solvers and allows new types of problems to be solved very efficiently.



Hide All
Anger, C., Gebser, M. and Schaub, T. 2006. Approaching the core of unfounded sets. In Proceedings of the International Workshop on Nonmonotonic Reasoning. Clausthal University of Technology, Institute for Informatics, 5866.
Aziz, R. A., Stuckey, P. J. and Somogyi, Z. 2013. Inductive definitions in constraint programming. In Proceedings of the Thirty-Sixth Australasian Computer Science Conference, Thomas, B., Ed. CRPIT, vol. 135. ACS, 4150.
Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press.
Baselice, S., Bonatti, P. A. and Gelfond, M. 2005. Towards an integration of answer set and constraint solving. In Proceedings of the 21st International Conference on Logic Programming. ICLP'05. Springer-Verlag, 5266.
Blondeel, M., Schockaert, S., Vermeir, D. and De Cock, M. 2013. Fuzzy answer set programming: An introduction. In Soft Computing: State of the Art Theory and Novel Applications. Springer, 209222.
Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Ricca, F. and Schaub, T. 2013. Asp-core-2 input language format.
Drescher, C. and Walsh, T. 2010. A translational approach to constraint answer set solving. Theory and Practice of Logic Programming 10, 4–6, 465480.
Drescher, C. and Walsh, T. 2012. Answer set solving with lazy nogood neneration. In Technical Communications of the 28th International Conference on Logic Programming. 188–200.
Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers.
Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007. Conflict-driven answer set solving. In Proceedings of the 20th International Joint Conference on Artificial Intelligence. MIT Press, 386.
Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From theory to practice. Artif. Intell 187, 5289.
Gebser, M., Ostrowski, M. and Schaub, T. 2009. Constraint answer set solving. In Proceedings of the 25th International Conference on Logic Programming. Springer, 235249.
Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In Proceedings of the Fifth International Conference on Logic Programming. MIT Press, 10701080.
Janssen, J., Heymans, S., Vermeir, D. and Cock, M. D. 2008. Compiling fuzzy answer set programs to fuzzy propositional theories. In Proceedings of the 24th International Conference on Logic Programming. Springer Berlin Heidelberg, 362376.
Liu, G., Janhunen, T. and Niemela, I. 2012. Answer set programming via mixed integer programming. In Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning. AAAI Press, 3242.
Marques-Silva, J. P. and Sakallah, K. A. 1999. GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48, 5, 506521.
Mellarkod, V. S., Gelfond, M. and Zhang, Y. 2008. Integrating answer set programming and constraint logic programming. Annals of Mathematics and Artificial Intelligence 53, 1–4, 251287.
Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. 2001. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference. ACM, 530535.
Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J. and Tack, G. 2007. MiniZinc: Towards a standard CP modelling language. In Proceedings of the 13th International Conference on the Principles and Practice of Constraint Programming, vol. 4741. Springer, 529543.
Nieuwenborgh, D. V., Cock, M. D. and Vermeir, D. 2006. Fuzzy answer set programming. In Proceedings of Logics in Artificial Intelligence, 10th European Conference, JELIA 2006. Springer Berlin Heidelberg, 359372.
Osorio, M. and Jayaraman, B. 1996. Aggregation and well-founded semantics. In Proceedings of Non-Monotonic Extensions of Logic Programming, NMELP '96. Springer-Verlag, 7190.
Rossi, F., Beek, P. v. and Walsh, T. 2006. Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science, New York, NY.
Schulte, C. and Stuckey, P. J. 2008. Efficient constraint propagation engines. ACM Transactions on Programming Languages and Systems 31, 1, Article No. 2.
Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model semantics. Artificial Intelligence 138, 1–2, 181234.
Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1988. Unfounded sets and well-founded semantics for general logic programs. In Proceedings of the ACM Symposium on Principles of Database Systems. ACM, 221230.


Related content

Powered by UNSILO

Stable model semantics for founded bounds



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.