Skip to main content Accessibility help
×
Home

Using sequential runtime distributions for the parallel speedup prediction of SAT local search

  • ALEJANDRO ARBELAEZ (a1), CHARLOTTE TRUCHET (a2) and PHILIPPE CODOGNET (a3)

Abstract

This paper presents a detailed analysis of the scalability and parallelization of local search algorithms for the Satisfiability problem. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of two SAT local search solvers, namely Sparrow and CCASAT, and compare the predicted performances to the results of an actual experimentation on parallel hardware up to 384 cores. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of instances (random and crafted), we observe that the local search solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal.

Copyright

References

Hide All
Aiex, R., Resende, M. and Ribeiro, C. 2002. Probability distribution of solution time in GRASP: An experimental investigation. Journal of Heuristics 8, 343373.
Aiex, R., Resende, M. and Ribeiro, C. 2007. TTT Plots: A perl program to create time-to-target plots. Optimization Letters 1, 355366.
Ansótegui, C., Sellmann, M. and Tierney, K. 2009. A gender-based genetic algorithm for the automatic configuration of algorithms. In 15th International Conference on Principles and Practice of Constraint Programming, Gent, I. P., Ed. LNCS, vol. 5732. Springer, Lisbon, Portugal, 142157.
Arbelaez, A. and Codognet, P. 2012. Massivelly parallel local search for SAT. In ICTAI'12. IEEE Computer Society, Athens, Greece, 5764.
Arbelaez, A. and Codognet, P. 2013. From sequential to parallel local search for SAT. In 13th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP'13), To appear.
Arbelaez, A. and Hamadi, Y. 2011. Improving parallel local search for SAT. In Learning and Intelligent Optimization, 5th International Conference, LION'11, Coello, C. A. C., Ed. LNCS, vol. 6683. Springer, 4660.
Babai, L. 1979. Monte-Carlo algorithms in graph isomorphism testing. Research Report D.M.S. No. 79-10, Université de Montréal.
Balint, A. and Fröhlich, A. 2010. Improving stochastic local search for SAT with a new probability distribution. In SAT'10, Strichman, O. and Szeider, S., Eds. LNCS, vol. 6175. Springer, Edinburgh, UK, 1015.
Cai, S., Luo, C. and Su, K. 2012. CCASAT: Solver description. In SAT Challenge 2012: Solver and Benchmark Descriptions. Vol. B-2012-2 of Department of Computer Science Series of Publications B. University of Helsinki, 1314.
David, H. and Nagaraja, H. 2003. Order Statistics. Wiley series in probability and mathematical statistics. Probability and mathematical statistics. John Wiley.
Hoos, H. and Stütze, T. 2005. Stochastic Local Search: Foundations and Applications. Morgan Kaufmann.
Hoos, H. H. and Stützle, T. 1998. Evaluating las vegas algorithms: Pitfalls and remedies. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI'98. Morgan Kaufmann, 238245.
Hoos, H. H. and Stützle, T. 1999. Towards a characterisation of the behaviour of stochastic local search algorithms for SAT. Artif. Intell. 112, 1–2, 213232.
Hutter, F., Hoos, H. H., Leyton-Brown, K. and Stützle, T. 2009. ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267306.
Kroc, L., Sabharwal, A. and Selman, B. 2010. An empirical study of optimal noise and runtime distributions in local search. In SAT'10, Strichman, O. and Szeider, S., Eds. LNCS, vol. 6175. Springer, Edinburgh, UK, 346351.
Luby, M., Sinclair, A. and Zuckerman, D. 1993. Optimal speedup of las vegas algorithms. In ISTCS, 128–133.
Maneva, E. and Sinclair, A. 2008. On the satisfiability threshold and clustering of solutions of random 3-SAT formulas. Theoretical Computer Science 407, 1–3, 359369.
Martins, R., Manquinho, V. and Lynce, I. 2012. An overview of parallel SAT solving. Constraints 17, 304347.
Munoz, P., Barrero, D. and Moreno, M. 2012. Run-time analysis of classical path-planning algorithms. In Proceedings of SGAI 2012, Research and Development in Intelligent Systems XXIX. Springer Verlag, 137148.
Nadarajah, S. 2008. Explicit expressions for moments of order statistics. Statistics & Probability Letters 78, 2 (Feb.), 196205.
Pardalos, P. M., Pitsoulis, L. S., Mavridou, T. D. and Resende, M. G. C. 1995. Parallel search for combinatorial optimization: Genetic algorithms, simulated annealing, tabu search and GRASP. In Parallel Algorithms for Irregularly Structured Problems (IRREGULAR), 317–331.
Pardalos, P. M., Pitsoulis, L. S. and Resende, M. G. C. 1996. A parallel grasp for MAX-SAT problems. In 3rd International Workshop on Applied Parallel Computing, Industrial Computation and Optimization, Wasniewski, J., Dongarra, J., Madsen, K. and Olesen, D., Eds. LNCS. Springer, Lyngby, Denmark.
Pham, D. N. and Gretton, C. 2007. gNovelty+. In Solver Description, SAT Competition 2007.
Ribeiro, C., Rosseti, I. and Vallejos, R. 2012. Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms. Journal of Global Optimization 54, 405429.
Shylo, O. V., Middelkoop, T. and Pardalos, P. M. 2011. Restart strategies in optimization: Parallel and serial cases. Parallel Computing 37, 1, 6068.
Truchet, C., Richoux, F. and Codognet, P. 2013. Prediction of parallel speed-ups for Las Vegas algorithms. In Proceedings of ICPP-2013, 42nd International Conference on Parallel Processing, Dongarra, J. and Robert, Y., Eds. IEEE Press.
Van Gelder, A. 2011. Careful ranking of multiple solvers with timeouts and ties. In SAT'11, Sakallah, K. and Simon, L., Eds. Lecture Notes in Computer Science, vol. 6695. Springer, Ann Arbor, MI, USA, 317328.
Verhoeven, M. G. A. 1996. Parallel local search. PhD thesis, University of Eindhoven, Eindhoven, Netherlands.
Verhoeven, M. and Aarts, E. 1995. Parallel local search. Journal of Heuristics 1, 1, 4365.
Wolfram, S. 2003. The Mathematica Book, 5th edition. Wolfram Media.
Xu, L., Hutter, F., Hoos, H. H. and Leyton-Brown, K. 2008. Satzilla: Portfolio-based algorithm selection for sat. Journal of Artificial Intelligence Research 32, 565606.

Keywords

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

Arbelaez et al. supplementary material
Appendix

 PDF (132 KB)
132 KB

Using sequential runtime distributions for the parallel speedup prediction of SAT local search

  • ALEJANDRO ARBELAEZ (a1), CHARLOTTE TRUCHET (a2) and PHILIPPE CODOGNET (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.